3D Current Collectors for Lithium-Ion Batteries: A Topical Review

[1]  Pengjian Zuo,et al.  Enhancement of the electrochemical performance of silicon/carbon composite material for lithium ion batteries , 2011 .

[2]  Yuhai Hu,et al.  Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries , 2013 .

[3]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[4]  Rencheng Jin,et al.  Co9S8 nanosheet arrays supported on nickel foam for enhanced performance as anode material for Li-ion batteries , 2016 .

[5]  Wenhui Shi,et al.  Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. , 2013, Small.

[6]  Super-hierarchical Ni/porous-Ni/V2O5 nanocomposites , 2017 .

[7]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[8]  Jing Zhang,et al.  Self-assembled sandwich-like NiO film and its application for Li-ion batteries , 2011 .

[9]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[10]  Teng Zhai,et al.  Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries , 2014 .

[11]  Ling Huang,et al.  Sn–Co alloy anode using porous Cu as current collector for lithium ion battery , 2009 .

[12]  Metal Oxide Cathode Materials for Electrochemical Energy Storage: A Review , 1990 .

[13]  Chunlei Wang,et al.  Fabrication of three-dimensional porous ZnMn2O4 thin films on Ni foams through electrostatic spray deposition for high-performance lithium-ion battery anodes , 2017 .

[14]  Minh Hien Thi Nguyen,et al.  Application of a new acrylonitrile/butylacrylate water-based binder for negative electrodes of lithium-ion batteries , 2013 .

[15]  Dongwook Han,et al.  Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries , 2012 .

[16]  Xinhua Xu,et al.  Multilayer Zn-doped SnO2 hollow nanospheres encapsulated in covalently interconnected three-dimensional graphene foams for high performance lithium-ion batteries , 2017 .

[17]  Daniel A. Steingart,et al.  Reinforced Electrode Architecture for a Flexible Battery with Paperlike Characteristics , 2013 .

[18]  Paul V Braun,et al.  Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. , 2012, Nano letters.

[19]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[20]  Rodney S. Ruoff,et al.  Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. , 2012, Nano letters.

[21]  Yan Li,et al.  Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage , 2016 .

[22]  Y. Wan,et al.  Anchoring Fe 3 O 4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries , 2015 .

[23]  Dan Xu,et al.  Dendritic Ni‐P‐Coated Melamine Foam for a Lightweight, Low‐Cost, and Amphipathic Three‐Dimensional Current Collector for Binder‐Free Electrodes , 2014, Advanced materials.

[24]  Vincent S. Battaglia,et al.  Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage , 2011 .

[25]  Lili Xing,et al.  Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes. , 2011, Chemical communications.

[26]  Chao Li,et al.  Asymmetric Supercapacitor Electrodes and Devices , 2017, Advanced materials.

[27]  L. Piraux,et al.  Three-dimensional interconnected Nicore–NiOshell nanowire networks for lithium microbattery architectures , 2016 .

[28]  Hong Liang,et al.  Micro‐ and Nano‐Structured Vanadium Pentoxide (V2O5) for Electrodes of Lithium‐Ion Batteries , 2017 .

[29]  J. Tu,et al.  Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries , 2009 .

[30]  Hong Liang,et al.  Hierarchical structured nickel–copper hybrids via simple electrodeposition , 2018, Journal of Applied Electrochemistry.

[31]  Yung-Cheng Lee,et al.  Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. , 2012, Nano letters.

[32]  R. Poprawe,et al.  Laser additive manufacturing of metallic components: materials, processes and mechanisms , 2012 .

[33]  Rujia Zou,et al.  Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries , 2015 .

[34]  Chunsheng Wang,et al.  A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. , 2010, Chemical communications.

[35]  Nobuyuki Imanishi,et al.  Rechargeable lithium–air batteries: characteristics and prospects , 2014 .

[36]  Jie Lin,et al.  Self-assembled interwoven CoS2/CNTs/graphene architecture as anode for high-performance lithium ion batteries , 2017 .

[37]  W. Hwang,et al.  Fabrication of Metal Nanohoneycomb Structures and Their Tribological Behavior , 2008 .

[38]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[39]  Hua Zhang,et al.  Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. , 2015, Journal of the American Chemical Society.

[40]  Ling Huang,et al.  Lithium storage performance and interfacial processes of three dimensional porous Sn-Co alloy electrodes for lithium-ion batteries , 2011 .

[41]  M. Schwab,et al.  Preparation of a Binder-Free Three-Dimensional Carbon Foam/Silicon Composite as Potential Material for Lithium Ion Battery Anodes. , 2016, ACS applied materials & interfaces.

[42]  T. Sakai,et al.  Long cycle-life LiFePO4/Cu-Sn lithium ion battery using foam-type three-dimensional current collector , 2010 .

[43]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[44]  Q. Li,et al.  High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors. , 2014, ACS applied materials & interfaces.

[45]  Yan Yu,et al.  Three-dimensional porous amorphous SnO2 thin films as anodes for Li-ion batteries , 2009 .

[46]  Jong-Sung Yu,et al.  Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications. , 2013, Accounts of chemical research.

[47]  Edmond Cambril,et al.  Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography , 2009 .

[48]  Z. Du,et al.  Preparation and characterization of three-dimensional tin thin-film anode with good cycle performance , 2010 .

[49]  Xiangyun Song,et al.  Carbon nanofiber–sulfur composite cathode materials with different binders for secondary Li/S cells , 2012 .

[50]  K. Edström,et al.  3D lithium ion batteries{from fundamentals to fabrication , 2011 .

[51]  M. Zheng,et al.  Electrochemical Energy Storage Device for Electric Vehicles , 2011 .

[52]  Jie Lin,et al.  Three-dimensional VS4/graphene hierarchical architecture as high-capacity anode for lithium-ion batteries , 2016 .

[53]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[54]  Fei Zhou,et al.  Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries , 2011 .

[55]  Xiaofen Li,et al.  Progress of electrochemical capacitor electrode materials: A review , 2009 .

[56]  Z. Huang,et al.  3D graphene supported MoO2 for high performance binder-free lithium ion battery. , 2014, Nanoscale.

[57]  Lin Xu,et al.  Nanowire electrodes for electrochemical energy storage devices. , 2014, Chemical reviews.

[58]  D. Dunand,et al.  3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam , 2016, Scientific Reports.

[59]  Cheng Li,et al.  Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries , 2014 .

[60]  Li-zhen Fan,et al.  Three-Dimensional Interconnected Network of Graphene-Wrapped Silicon/Carbon Nanofiber Hybrids for Binder-Free Anodes in Lithium-Ion Batteries , 2015 .

[61]  Qi-Hui Wu,et al.  Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries. , 2013, Nanoscale.

[62]  J. Tu,et al.  A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries. , 2013, Nanoscale.

[63]  Won‐Jin Kwak,et al.  The binder effect on an oxide-based anode in lithium and sodium-ion battery applications: the fastest way to ultrahigh performance. , 2014, Chemical communications.

[64]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[65]  Vladimir Kolosnitsyn,et al.  Lithium-sulfur batteries: Problems and solutions , 2008 .

[66]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[67]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[68]  Joon Kyo Seo,et al.  Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries , 2016 .

[69]  Hua Zhang,et al.  Carbon‐Based Functional Materials Derived from Waste for Water Remediation and Energy Storage , 2017, Advanced materials.

[70]  Bo Wang,et al.  NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries. , 2016, Physical chemistry chemical physics : PCCP.

[71]  Hong Liang,et al.  Hierarchical micro-architectures of electrodes for energy storage , 2015 .

[72]  Yunhui Huang,et al.  Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery , 2015 .

[73]  L. Pisani Simple Expression for the Tortuosity of Porous Media , 2011 .

[74]  Yunpeng Huang,et al.  Electrospun porous carbon nanofiber@MoS2 core/sheath fiber membranes as highly flexible and binder-free anodes for lithium-ion batteries. , 2015, Nanoscale.

[75]  Zikang Tang,et al.  Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications , 2016 .

[76]  Fei Zhao,et al.  Super‐Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries , 2013 .

[77]  B. Li,et al.  Integration of Si in a metal foam current collector for stable electrochemical cycling in Li-ion batteries , 2015 .

[78]  Reza Ghodssi,et al.  Hierarchical three-dimensional microbattery electrodes combining bottom-up self-assembly and top-down micromachining. , 2012, ACS nano.

[79]  M. Kahrizi,et al.  Optical properties of thick metal nanohole arrays fabricated by electron‐beam and nanosphere lithography , 2009 .

[80]  Tianxi Liu,et al.  A flexible free-standing defect-rich MoS2/graphene/carbon nanotube hybrid paper as a binder-free anode for high-performance lithium ion batteries , 2015 .

[81]  Yingke Zhou,et al.  Well-dispersed LiFePO4 nanoparticles anchored on a three-dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries , 2017 .

[82]  T. Fuller,et al.  Hierarchically Structured Nanomaterials for Electrochemical Energy Conversion. , 2016, Angewandte Chemie.

[83]  Hanna Enriquez,et al.  Epitaxial growth of a silicene sheet , 2010, 1204.0523.

[84]  Peter Lamp,et al.  Future generations of cathode materials: an automotive industry perspective , 2015 .

[85]  K. M. Abraham,et al.  Lithium-air and lithium-sulfur batteries , 2011 .

[86]  Xiongwei Wu,et al.  Nanostructured positive electrode materials for post-lithium ion batteries , 2016 .

[87]  A. Manthiram,et al.  Nano-cellular carbon current collectors with stable cyclability for Li–S batteries , 2013 .

[88]  Hebing Zhang,et al.  Effect of Bubble Behavior on the Morphology of Foamed Porous Copper Prepared via Electrodeposition , 2013 .

[89]  Lin Gu,et al.  Carbon-Coated Germanium Nanowires on Carbon Nanofibers as Self-Supported Electrodes for Flexible Lithium-Ion Batteries. , 2015, Small.

[90]  Jihyun Hong,et al.  Aqueous rechargeable Li and Na ion batteries. , 2014, Chemical reviews.

[91]  Ozan Toprakci,et al.  A review of recent developments in membrane separators for rechargeable lithium-ion batteries , 2014 .

[92]  Dong-Hwa Seo,et al.  Flexible energy storage devices based on graphene paper , 2011 .

[93]  L. Kou,et al.  Two‐Dimensional Metal Oxide Nanomaterials for Next‐Generation Rechargeable Batteries , 2017, Advanced materials.

[94]  Chaohe Xu,et al.  Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. , 2014, ACS applied materials & interfaces.

[95]  Jilei Liu,et al.  Self‐Assembly of Honeycomb‐like MoS2 Nanoarchitectures Anchored into Graphene Foam for Enhanced Lithium‐Ion Storage , 2014, Advanced materials.

[96]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[97]  Kai Cui,et al.  Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. , 2014, Nano letters.

[98]  R. Bouchet,et al.  Tortuosity of porous particles. , 2007, Analytical chemistry.

[99]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[100]  Dongwook Han,et al.  Effects of Substrate Morphology and Postelectrodeposition on Structure of Cu Foam and Their Application for Li-Ion Batteries , 2010 .

[101]  Guofu Zhou,et al.  Three-dimensional carbon cloth-supported ZnO nanorod arrays as a binder-free anode for lithium-ion batteries , 2017, Journal of Nanoparticle Research.

[102]  Xiangwu Zhang,et al.  Aligned Carbon Nanotube‐Silicon Sheets: A Novel Nano‐architecture for Flexible Lithium Ion Battery Electrodes , 2013, Advanced materials.

[103]  G. Yin,et al.  Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates , 2009 .

[104]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[105]  P. Moreau,et al.  Very High Surface Capacity Observed Using Si Negative Electrodes Embedded in Copper Foam as 3D Current Collectors , 2014 .

[106]  P. Chu,et al.  Ni-coated Si microchannel plate electrodes in three-dimensional lithium-ion battery anodes , 2013 .

[107]  Daniel M. Seo,et al.  Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation. , 2016, ACS applied materials & interfaces.

[108]  Ping Li,et al.  Epitaxial growth of large-gap quantum spin Hall insulator on semiconductor surface , 2014, Proceedings of the National Academy of Sciences.

[109]  Qichun Zhang,et al.  Self-assembly silicon/porous reduced graphene oxide composite film as a binder-free and flexible anode for lithium-ion batteries , 2015 .

[110]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[111]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[112]  C. F. Ng,et al.  Oxide nanostructures hyperbranched with thin and hollow metal shells for high-performance nanostructured battery electrodes. , 2014, Small.

[113]  P. Mukherjee,et al.  Superhierarchical Nickel–Vanadia Nanocomposites for Lithium Storage , 2018 .

[114]  Ling Huang,et al.  Electrodeposition and lithium storage performance of three-dimensional porous reticular Sn-Ni alloy electrodes , 2009 .

[115]  H. Hng,et al.  Direct growth of FeVO4 nanosheet arrays on stainless steel foil as high-performance binder-free Li ion battery anode , 2012 .

[116]  P. Mukherjee,et al.  Hierarchical Structured Cu/Ni/TiO2 Nanocomposites as Electrodes for Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[117]  Sang-Young Lee,et al.  Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries , 2013 .

[118]  Pierre-Louis Taberna,et al.  High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries , 2009 .

[119]  Matthew M. Huie,et al.  Cathode materials for magnesium and magnesium-ion based batteries , 2015 .

[120]  Hyun Ho Choi,et al.  Electrochemical synthesis and hydrophilicity of micro-pored aluminum foil , 2017 .

[121]  Guangmin Zhou,et al.  Graphene/metal oxide composite electrode materials for energy storage , 2012 .

[122]  V. Battaglia,et al.  SBR–PVDF based binder for the application of SLMP in graphite anodes , 2013 .

[123]  Zaiping Guo,et al.  3D Hierarchical Porous α‐Fe2O3 Nanosheets for High‐Performance Lithium‐Ion Batteries , 2015 .

[124]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[125]  Hal-Bon Gu,et al.  Electrochemical properties of lithium–sulfur batteries , 2003 .

[126]  Di Hu,et al.  Ideal Three‐Dimensional Electrode Structures for Electrochemical Energy Storage , 2014, Advanced materials.

[127]  H. Kawarada,et al.  Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis , 2012 .

[128]  Tianxi Liu,et al.  Flexible Electrospun Carbon Nanofiber@NiS Core/Sheath Hybrid Membranes as Binder‐Free Anodes for Highly Reversible Lithium Storage , 2016 .

[129]  William E. Frazier,et al.  Metal Additive Manufacturing: A Review , 2014, Journal of Materials Engineering and Performance.

[130]  M. Sahimi,et al.  Tortuosity in Porous Media: A Critical Review , 2013 .

[131]  P. Novák,et al.  Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries , 2006 .

[132]  E. Ling,et al.  Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper , 2015 .

[133]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods , 2002 .

[134]  L. Murr,et al.  Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies , 2012 .

[135]  M. Liu,et al.  Nanoporous Structures Prepared by an Electrochemical Deposition Process , 2003 .

[136]  T. Gustafsson,et al.  Self-supported three-dimensional nanoelectrodes for microbattery applications. , 2009, Nano letters.

[137]  Gang Chen,et al.  Carbon coated flower like Bi2S3 grown on nickel foam as binder-free electrodes for electrochemical hydrogen and Li-ion storage capacities , 2015 .

[138]  M. Yoshio,et al.  Lithium-ion batteries , 2009 .

[139]  Yang‐Kook Sun,et al.  Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode , 2015 .

[140]  Jean Dijon,et al.  Novel positive electrode architecture for rechargeable lithium/sulfur batteries , 2012 .