On the Structure of Solutions to the Periodic Hunter-Saxton Equation

We prove the local existence of strong solutions of the periodic Hunter--Saxton equation, and we show that all strong solutions except space-independent solutions blow up in finite time.

[1]  Adrian Constantin,et al.  A shallow water equation on the circle , 1999 .

[2]  Tosio Kato,et al.  Quasi-linear equations of evolution, with applications to partial differential equations , 1975 .

[3]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[4]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[5]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[6]  A. Constantin,et al.  TOPICAL REVIEW: On the geometric approach to the motion of inertial mechanical systems , 2002 .

[7]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[8]  Luc Molinet,et al.  On the Cauchy Problem for the Generalized Korteweg-de Vries Equation , 2003 .

[9]  J. K. Hunter,et al.  On a completely integrable nonlinear hyperbolic variational equation , 1994 .

[10]  Masayoshi Tsutsumi,et al.  On the Korteweg-de Vries equation , 1975 .

[11]  Hui-Hui Dai,et al.  Transformations for the Camassa-Holm Equation, Its High-Frequency Limit and the Sinh-Gordon Equation. , 1998 .

[12]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[13]  J. Escher,et al.  Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation , 1998 .

[14]  J. K. Hunter,et al.  Dynamics of director fields , 1991 .

[15]  Richard Beals,et al.  Inverse scattering solutions of the hunter-saxton equation , 2001 .

[16]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[17]  P. Olver,et al.  Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.