The CLS2 gene encodes a protein with multiple membrane-spanning domains that is important Ca2+ tolerance in yeast

[1]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[2]  K. Gable,et al.  A novel protein, CSG2p, is required for Ca2+ regulation in Saccharomyces cerevisiae. , 1994, The Journal of biological chemistry.

[3]  A. Nakano,et al.  Genetic interactions among genes involved in the STT4-PKC1 pathway of Saccharomyces cerevisiae , 1994, Molecular and General Genetics MGG.

[4]  G. Fink,et al.  Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases , 1994, The Journal of cell biology.

[5]  T. Stevens,et al.  VMA13 encodes a 54-kDa vacuolar H(+)-ATPase subunit required for activity but not assembly of the enzyme complex in Saccharomyces cerevisiae. , 1993, The Journal of biological chemistry.

[6]  M. Aigle,et al.  Yeast mutants affected in viability upon starvation have a modified phospholipid composition , 1993, Yeast.

[7]  M. Hattori [Automated DNA sequencer in genome analysis]. , 1993, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[8]  Y. Eilam,et al.  Calcium homeostasis in yeast cells exposed to high concentrations of calcium Roles of vacuolar H+‐ATPase and cellular ATP , 1993, FEBS Letters.

[9]  T. Stevens,et al.  VMA12 is essential for assembly of the vacuolar H(+)-ATPase subunits onto the vacuolar membrane in Saccharomyces cerevisiae. , 1993, The Journal of biological chemistry.

[10]  Y. Anraku,et al.  RHO gene products, putative small GTP‐binding proteins, are importnat for activation of the CAL1/CDC43 gene product, a protein geranylgeranyltransferase in Saccharomyces cerevisiae , 1992, Yeast.

[11]  R. Hirata,et al.  Genetic and cell biological aspects of the yeast vacuolar H+-ATPase , 1992, Journal of bioenergetics and biomembranes.

[12]  G. Fink,et al.  The yeast Ca(2+)-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. , 1992, Molecular biology of the cell.

[13]  Y. Anraku,et al.  VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H(+)-ATPase activity. , 1991, The Journal of biological chemistry.

[14]  M. Aigle,et al.  Yeast mutant affected for viability upon nutrient starvation: Characterization and cloning of the RVS161 gene , 1991, Yeast.

[15]  Y. Anraku,et al.  Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet- phenotype are ascribable to defects of vacuolar membrane H(+)-ATPase activity. , 1991, The Journal of biological chemistry.

[16]  A. Nakano,et al.  The GTP-binding Sar1 protein is localized to the early compartment of the yeast secretory pathway. , 1991, Biochimica et Biophysica Acta.

[17]  Y. Anraku,et al.  Cell cycle control by calcium and calmodulin in Saccharomyces cerevisiae. , 1991, Biochimica et biophysica acta.

[18]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[19]  Y. Anraku,et al.  Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. , 1990, The Journal of biological chemistry.

[20]  Fred Winston,et al.  Methods in Yeast Genetics: A Laboratory Course Manual , 1990 .

[21]  M. Muramatsu,et al.  A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus , 1989, The Journal of cell biology.

[22]  Y. Anraku,et al.  Nucleotide sequence ofAMS1, the structure gene of vacuolarα-mannosidase of Saccharomyces cerevisiae , 1989 .

[23]  T A Rapoport,et al.  Predicting the orientation of eukaryotic membrane-spanning proteins. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G. Fink,et al.  The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family , 1989, Cell.

[25]  M. Rose,et al.  KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene , 1989, Cell.

[26]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[27]  G. Rödel,et al.  Accumulation of the cytochrome c oxidase subunits I and II in yeast requires a mitochondrial membrane-associated protein, encoded by the nuclear SCO1 gene , 1989, Molecular and General Genetics MGG.

[28]  Y. Anraku,et al.  Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion , 1988, Journal of bacteriology.

[29]  P. Novick,et al.  A ras-like protein is required for a post-Golgi event in yeast secretion , 1987, Cell.

[30]  Y. Anraku,et al.  Isolation and characterization of Ca2+-sensitive mutants of Saccharomyces cerevisiae. , 1986, Journal of general microbiology.

[31]  Y. Anraku,et al.  Calcium-sensitive cls4 mutant of Saccharomyces cerevisiae with a defect in bud formation , 1986, Journal of bacteriology.

[32]  L. Kováč Calcium and Saccharomyces cerevisiae , 1985 .

[33]  Y. Eilam,et al.  Cytoplasmic Ca2+Homeostasis Maintained by a Vacuolar Ca2+Transport System in the Yeast Saccharomyces cerevisiae , 1985 .

[34]  Y. Anraku,et al.  Purification and properties of H+-translocating, Mg2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. , 1985, The Journal of biological chemistry.

[35]  Andrew R. Cherenson,et al.  The structure of an antigenic determinant in a protein , 1984, Cell.

[36]  R. Rodriguez,et al.  Recombinant DNA Techniques: An Introduction , 1983 .

[37]  Y. Anraku,et al.  Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. , 1983, The Journal of biological chemistry.

[38]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[39]  Y. Eilam The effect of monovalent cations on calcium efflux in yeasts. , 1982, Biochimica et biophysica acta.

[40]  F. Sherman,et al.  DNA sequence required for efficient transcription termination in yeast , 1982, Cell.

[41]  Y. Anraku,et al.  Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of SAccharomyces cerevisiae. , 1981, The Journal of biological chemistry.

[42]  J. Broach,et al.  Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. , 1979, Gene.

[43]  Y. Anraku,et al.  Genetic study of the role of calcium ions in the cell division cycle of Saccharomyces cerevisiae: A calcium-dependent mutant and its trifluoperazine-dependent pseudorevertants , 2004, Molecular and General Genetics MGG.

[44]  R. Serrano 9 Transport across Yeast Vacuolar and Plasma Membranes , 1991 .

[45]  H. Nojima,et al.  High efficiency transformation of Escherichia coli with plasmids. , 1990, Gene.

[46]  B. Haarer,et al.  Fluorescence microscopy methods for yeast. , 1989, Methods in cell biology.

[47]  J. Vieira,et al.  Production of single-stranded plasmid DNA. , 1987, Methods in enzymology.

[48]  R. Kretsinger Calcium coordination and the calmodulin fold: divergent versus convergent evolution. , 1987, Cold Spring Harbor symposia on quantitative biology.

[49]  D. Botstein,et al.  A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. , 1987, Gene.

[50]  Y. Anraku,et al.  Nucleotide sequence of the CLS4 (CDC24) gene of Saccharomyces cerevisiae. , 1987, Gene.

[51]  Y. Anraku Active Transport of Amino-Acids and Calcium Ions in Fungal Vacuoles , 1987 .