Longitudinal Imaging of Heart Development With Optical Coherence Tomography

Optical coherence tomography (OCT) has great potential for deciphering the role of mechanics in normal and abnormal heart development. OCT images tissue microstructure and blood flow deep into the tissue (1-2 mm) at high spatiotemporal resolutions allowing unprecedented images of the developing heart. Here, we review the advancement of OCT technology to image heart development and report some of our recent findings utilizing OCT imaging under environmental control for longitudinal imaging. Precise control of the environment is absolutely required in longitudinal studies that follow the growth of the embryo or studies comparing normal versus perturbed heart development to obtain meaningful in vivo results. These types of studies are essential to tease out the influence of cardiac dynamics on molecular expression and their role in the progression of congenital heart defects.

[1]  Michael W. Jenkins,et al.  Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser. , 2007, Optics express.

[2]  Michael W. Jenkins,et al.  4D embryonic cardiography using gated optical coherence tomography. , 2006, Optics express.

[3]  Alex Cable,et al.  Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography. , 2008, Journal of biomedical optics.

[4]  R E Poelmann,et al.  Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. , 1997, Circulation research.

[5]  Kirill V. Larin,et al.  Optical coherence tomography for high-resolution imaging of mouse development in utero. , 2011, Journal of biomedical optics.

[6]  Barry Cense,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography. , 2003, Optics express.

[7]  J. Männer The anatomy of cardiac looping: A step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations , 2009, Clinical anatomy.

[8]  J. Izatt,et al.  High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography. , 1997, Optics express.

[9]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[10]  Jörg Männer,et al.  Cardiac looping in the chick embryo: A morphological review with special reference to terminological and biomechanical aspects of the looping process , 2000, The Anatomical record.

[11]  Adrian Mariampillai,et al.  Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system. , 2007, Optics express.

[12]  Benjamin J Vakoc,et al.  Heart wall velocimetry and exogenous contrast-based cardiac flow imaging in Drosophila melanogaster using Doppler optical coherence tomography. , 2010, Journal of biomedical optics.

[13]  Robert G. Gourdie,et al.  Hemodynamics Is a Key Epigenetic Factor in Development of the Cardiac Conduction System , 2003, Circulation research.

[14]  Changhuei Yang,et al.  Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. , 2007, Optics express.

[15]  Aiping Liu,et al.  Dynamic variation of hemodynamic shear stress on the walls of developing chick hearts: computational models of the heart outflow tract , 2009, Engineering with Computers.

[16]  J. Fujimoto,et al.  Investigation of developing embryonic morphology using optical coherence tomography. , 1996, Developmental biology.

[17]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[18]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[19]  Adrian Mariampillai,et al.  Optimized speckle variance OCT imaging of microvasculature. , 2010, Optics letters.

[20]  J. Izatt,et al.  Images in cardiovascular medicine: in vivo imaging of the adult Drosophila melanogaster heart with real-time optical coherence tomography. , 2006, Circulation.

[21]  Jörg Männer,et al.  How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube , 2010, Developmental dynamics : an official publication of the American Association of Anatomists.

[22]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[23]  James G. Fujimoto,et al.  Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos , 2008, Molecular vision.

[24]  Meng-Tsan Tsai,et al.  Observations of cardiac beating behaviors of wild‐type and mutant Drosophilae with optical coherence tomography , 2011, Journal of biophotonics.

[25]  Gabriel Acevedo-Bolton,et al.  Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis , 2003, Nature.

[26]  M. Jenkins,et al.  In vivo gated 4D imaging of the embryonic heart using optical coherence tomography. , 2007, Journal of biomedical optics.

[27]  Sandra Rugonyi,et al.  Finite element modeling of blood flow-induced mechanical forces in the outflow tract of chick embryonic hearts , 2007 .

[28]  Adrian Bradu,et al.  Dual optical coherence tomography/fluorescence microscopy for monitoring of Drosophila melanogaster larval heart. , 2009, Journal of biophotonics.

[29]  David L Wilson,et al.  High temporal resolution OCT using image-based retrospective gating. , 2009, Optics express.

[30]  Stephen A. Boppart,et al.  Optical Coherence Tomography , 2020, Imaging from Cells to Animals In Vivo.

[31]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[32]  Benjamin J Vakoc,et al.  Multimodality optical imaging of embryonic heart microstructure. , 2007, Journal of biomedical optics.

[33]  Ruikang K. Wang,et al.  Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart. , 2009, Journal of biomedical optics.

[34]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[35]  Viktor Hamburger,et al.  A series of normal stages in the development of the chick embryo , 1992, Journal of morphology.

[36]  S. Bhattacharya,et al.  Maternal high-fat diet interacts with embryonic Cited2 genotype to reduce Pitx2c expression and enhance penetrance of left–right patterning defects , 2010, Human molecular genetics.

[37]  Jerry Westerweel,et al.  In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. , 2006, Journal of biomechanics.

[38]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[39]  J. Fujimoto,et al.  Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. , 2006, Optics express.

[40]  Jakob Thomsen,et al.  Field programmable gate-array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo , 2009 .

[41]  Ruikang K. Wang,et al.  Quantifying blood flow and wall shear stresses in the outflow tract of chick embryonic hearts. , 2011, Computers & structures.

[42]  J. Izatt,et al.  In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  Valery V. Tuchin,et al.  Enhanced OCT imaging of embryonic tissue with optical clearing , 2008, BiOS.

[44]  Daniel L Marks,et al.  Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system. , 2006, Journal of biomedical optics.

[45]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[46]  R E Poelmann,et al.  Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart , 2010, Journal of The Royal Society Interface.

[47]  Kirill V Larin,et al.  Multiple-cardiac-cycle noise reduction in dynamic optical coherence tomography of the embryonic heart and vasculature. , 2009, Optics letters.

[48]  Brett E. Bouma,et al.  Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems , 2010, Disease Models & Mechanisms.

[49]  Jörg Männer,et al.  High‐resolution in vivo imaging of the cross‐sectional deformations of contracting embryonic heart loops using optical coherence tomography , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[50]  Ruikang K. Wang,et al.  Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography , 2010, Biomedical optics express.

[51]  Ashok Ramasubramanian,et al.  On modeling morphogenesis of the looping heart following mechanical perturbations. , 2008, Journal of biomechanical engineering.

[52]  A. Rollins,et al.  Quasi-telecentric optical design of a microscope-compatible OCT scanner. , 2005, Optics Express.

[53]  M. Dickinson,et al.  Hemodynamic measurements from individual blood cells in early mammalian embryos with Doppler swept source OCT. , 2009, Optics letters.

[54]  Michael Liebling,et al.  Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart , 2009, PLoS biology.

[55]  Michael Liebling,et al.  Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences. , 2005, Journal of biomedical optics.

[56]  Jörg Männer,et al.  In vivo imaging of the cyclic changes in cross‐sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: A contribution to the understanding of the ontogenesis of cardiac pumping function , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[57]  A Rollins,et al.  In vivo video rate optical coherence tomography. , 1998, Optics express.

[58]  Michael Liebling,et al.  Live Imaging of Early Developmental Processes in Mammalian Embryos with Optical Coherence Tomography. , 2009, Journal of innovative optical health sciences.

[59]  Joseph A. Izatt,et al.  Optical Coherence Tomography: A New High-Resolution Imaging Technology to Study Cardiac Development in Chick Embryos , 2002, Circulation.

[60]  Daniel X Hammer,et al.  Dual-beam Fourier domain optical Doppler tomography of zebrafish. , 2008, Optics express.

[61]  Victor X D Yang,et al.  High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis. , 2003, Optics express.

[62]  Joseph Izatt,et al.  Quantitative Measurement of Blood Flow Dynamics in Embryonic Vasculature Using Spectral Doppler Velocimetry , 2009, Anatomical record.

[63]  Ruikang K. Wang,et al.  Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation , 2008, Physics in medicine and biology.

[64]  Michael W. Jenkins,et al.  Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping. , 2011, American journal of physiology. Heart and circulatory physiology.

[65]  Joseph A. Izatt,et al.  In Vivo Imaging of the Adult Drosophila melanogaster Heart With Real-Time Optical Coherence Tomography , 2006 .

[66]  Andrew M. Rollins,et al.  Phenotyping transgenic embryonic murine hearts using optical coherence tomography , 2007 .

[67]  Kirill V. Larin,et al.  Speckle variance OCT imaging of the vasculature in live mammalian embryos , 2011 .

[68]  Louis A. Romero,et al.  A Cellular Automata Method for Phase Unwrapping , 1986, Topical Meeting On Signal Recovery and Synthesis II.

[69]  David L Wilson,et al.  Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography. , 2010, Journal of biomedical optics.

[70]  Igor R Efimov,et al.  Optical Coherence Tomography as a Tool for Measuring Morphogenetic Deformation of the Looping Heart , 2007, Anatomical record.

[71]  David L Wilson,et al.  Denoising and 4D visualization of OCT images. , 2008, Optics express.

[72]  B. Keller,et al.  Increased arterial load alters aortic structural and functional properties during embryogenesis. , 2006, American journal of physiology. Heart and circulatory physiology.

[73]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[74]  R E Poelmann,et al.  Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal. , 1999, Cardiovascular research.

[75]  Adrian Bradu,et al.  Arrhythmia Caused by a Drosophila Tropomyosin Mutation Is Revealed Using a Novel Optical Coherence Tomography Instrument , 2010, PloS one.

[76]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[77]  J G Fujimoto,et al.  Changes in the expression of the Alzheimer’s disease-associated presenilin gene in drosophila heart leads to cardiac dysfunction. , 2011, Current Alzheimer research.

[78]  J. Fujimoto,et al.  In vivo endoscopic optical biopsy with optical coherence tomography. , 1997, Science.

[79]  Kirill V Larin,et al.  Live imaging of rat embryos with Doppler swept-source optical coherence tomography. , 2009, Journal of biomedical optics.

[80]  Wolfgang Wieser,et al.  Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. , 2010, Optics express.