Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean.

A substantial body of evidence suggests that subsurface water masses in mid-Proterozoic marine basins were commonly anoxic, either euxinic (sulfidic) or ferruginous (free ferrous iron). To further document redox variations during this interval, a multiproxy geochemical and paleobiological investigation was conducted on the approximately 1000-m-thick Mesoproterozoic (Lower Riphean) Arlan Member of the Kaltasy Formation, central Russia. Iron speciation geochemistry, supported by organic geochemistry, redox-sensitive trace element abundances, and pyrite sulfur isotope values, indicates that basinal calcareous shales of the Arlan Member were deposited beneath an oxygenated water column, and consistent with this interpretation, eukaryotic microfossils are abundant in basinal facies. The Rhenium-Osmium (Re-Os) systematics of the Arlan shales yield depositional ages of 1414±40 and 1427±43 Ma for two horizons near the base of the succession, consistent with previously proposed correlations. The presence of free oxygen in a basinal environment adds an important end member to Proterozoic redox heterogeneity, requiring an explanation in light of previous data from time-equivalent basins. Very low total organic carbon contents in the Arlan Member are perhaps the key--oxic deep waters are more likely (under any level of atmospheric O2) in oligotrophic systems with low export production. Documentation of a full range of redox heterogeneity in subsurface waters and the existence of local redox controls indicate that no single stratigraphic section or basin can adequately capture both the mean redox profile of Proterozoic oceans and its variance at any given point in time.

[1]  M. Bertoni,et al.  Neoproterozoic Re-Os systematics of organic-rich rocks in the São Francisco Basin, Brazil and implications for hydrocarbon exploration , 2014 .

[2]  A. Knoll,et al.  740 Ma vase-shaped microfossils from Yukon, Canada: Implications for Neoproterozoic chronology and biostratigraphy , 2014 .

[3]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[4]  J. Brocks 10.3 – Sedimentary Hydrocarbons, Biomarkers for Early Life , 2014 .

[5]  F. Macdonald,et al.  Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth , 2013, Proceedings of the National Academy of Sciences.

[6]  E. Stüeken A test of the nitrogen-limitation hypothesis for retarded eukaryote radiation: Nitrogen isotopes across a Mesoproterozoic basinal profile , 2013 .

[7]  A. J. Kaufman,et al.  Re–Os age constraints and new observations of Proterozoic glacial deposits in the Vazante Group, Brazil , 2013 .

[8]  Linda C. Kah,et al.  Oceanic molybdenum drawdown by epeiric sea expansion in the Mesoproterozoic , 2013 .

[9]  R. Creaser,et al.  Constraining the depositional history of the Neoproterozoic Shaler Supergroup, Amundsen Basin, NW Canada: Rhenium-osmium dating of black shales from the Wynniatt and Boot Inlet Formations , 2013 .

[10]  A. A. Krasnobaev,et al.  Zircon geochronology of the Mashak volcanic rocks and the problem of the age of the lower-middle Riphean boundary (Southern Urals) , 2013, Stratigraphy and Geological Correlation.

[11]  M. Wingate,et al.  The ca. 1380 Ma Mashak igneous event of the Southern Urals , 2013 .

[12]  S. Poulton,et al.  Anoxia in the terrestrial environment during the late Mesoproterozoic , 2013 .

[13]  E. Sperling,et al.  Paleoredox and pyritization of soft-bodied fossils in the Ordovician Frankfort Shale of New York , 2013, American Journal of Science.

[14]  A. Bekker,et al.  Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales , 2013 .

[15]  A. Bekker,et al.  Proterozoic ocean redox and biogeochemical stasis , 2013, Proceedings of the National Academy of Sciences.

[16]  A. A. Krasnobaev,et al.  Zirconology of Navysh volcanic rocks of the Ai Suite and the problem of the age of the Lower Riphean boundary in the Southern Urals , 2013, Doklady Earth Sciences.

[17]  D. Canfield,et al.  Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean , 2013, Nature Communications.

[18]  V. Puchkov Structural stages and evolution of the Urals , 2013, Mineralogy and Petrology.

[19]  S. Litvin,et al.  Oceanographic and biological effects of shoaling of the oxygen minimum zone. , 2013, Annual review of marine science.

[20]  D. Schrag,et al.  Regulation of atmospheric oxygen during the Proterozoic , 2012 .

[21]  A. Knoll,et al.  A basin redox transect at the dawn of animal life , 2012 .

[22]  T. Lyons,et al.  Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies , 2012 .

[23]  T. Algeo,et al.  Paleoceanographic applications of trace-metal concentration data , 2012 .

[24]  Osvaldo Ulloa,et al.  Microbial oceanography of anoxic oxygen minimum zones , 2012, Proceedings of the National Academy of Sciences.

[25]  B. Kamber,et al.  Arctic Bay Formation, Borden Basin, Nunavut (Canada): Basin evolution, black shale, and dissolved metal systematics in the Mesoproterozoic ocean , 2012 .

[26]  A. Knoll,et al.  Late Ediacaran redox stability and metazoan evolution , 2012 .

[27]  A. Knoll,et al.  Frontiers of Astrobiology: Our Evolving Planet , 2012 .

[28]  A. Bekker,et al.  Widespread iron-rich conditions in the mid-Proterozoic ocean , 2011, Nature.

[29]  A. Knoll,et al.  Ediacaran Microfossils from the Ura Formation, Baikal-Patom Uplift, Siberia: Taxonomy and Biostratigraphic Significance , 2011, Journal of Paleontology.

[30]  D. Canfield,et al.  Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History , 2011 .

[31]  Linda C. Kah,et al.  Protracted oxygenation of the Proterozoic biosphere , 2011 .

[32]  D. Canfield,et al.  Spatial variability in oceanic redox structure 1.8 billion years ago , 2010 .

[33]  A. Knoll,et al.  Geobiology of the late Paleoproterozoic Duck Creek Formation, Western Australia , 2010 .

[34]  A. Knoll,et al.  An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA , 2010 .

[35]  Nicolas Gruber,et al.  Ocean deoxygenation in a warming world. , 2010, Annual review of marine science.

[36]  A. Knoll,et al.  Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age , 2009, Proceedings of the National Academy of Sciences.

[37]  A. Bekker,et al.  Seafloor-hydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater , 2009 .

[38]  A. Anbar,et al.  Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia , 2009 .

[39]  A. Anbar,et al.  Tracking Euxinia in the Ancient Ocean: A Multiproxy Perspective and Proterozoic Case Study , 2009 .

[40]  I. Fletcher,et al.  Reassessing the first appearance of eukaryotes and cyanobacteria , 2008, Nature.

[41]  A. Knoll,et al.  Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry , 2008, Science.

[42]  A. Bekker,et al.  Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA , 2007 .

[43]  J. Bartley,et al.  C-and Sr-isotope chemostratigraphy as a tool for verifying age of Riphean deposits in the Kama-Belaya aulacogen, the east European platform , 2007 .

[44]  T. Lyons,et al.  A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins , 2006 .

[45]  T. Lyons,et al.  Trace metals as paleoredox and paleoproductivity proxies: An update , 2006 .

[46]  H. D. Holland,et al.  The oxygenation of the atmosphere and oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[47]  A. Knoll,et al.  Eukaryotic organisms in Proterozoic oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[48]  A. Knoll,et al.  Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea , 2005, Nature.

[49]  T. Lyons,et al.  Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution , 2005 .

[50]  D. Canfield,et al.  Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates , 2005 .

[51]  D. Canfield,et al.  The transition to a sulphidic ocean ∼ 1.84 billion years ago , 2004, Nature.

[52]  John J. Helly,et al.  Global distribution of naturally occurring marine hypoxia on continental margins , 2004 .

[53]  A. Anbar,et al.  Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans , 2004, Science.

[54]  R. Creaser,et al.  Re-Os geochronology of organic rich sediments: an evaluation of organic matter analysis methods , 2003 .

[55]  Yanan Shen,et al.  Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin , 2003, Nature.

[56]  Gabriel Gelius-Dietrich,et al.  Early Cell Evolution, Eukaryotes, Anoxia, Sulfide, Oxygen, Fungi First (?), and a Tree of Genomes Revisited , 2003, IUBMB life.

[57]  R. Summons,et al.  Sedimentary Hydrocarbons, Biomarkers for Early Life , 2003 .

[58]  R. Raiswell,et al.  The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition , 2002 .

[59]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[60]  A. Knoll,et al.  Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia , 2002 .

[61]  L. The “ North American shale composite ” : Its compilation , major and trace element characteristics , 2002 .

[62]  A. Knoll,et al.  Morphological and ecological complexity in early eukaryotic ecosystems , 2001, Nature.

[63]  R. Walker,et al.  Osmium isotopic compositions of mantle xenoliths: A global perspective , 2001 .

[64]  B. Peucker‐Ehrenbrink,et al.  The marine osmium isotope record , 2000 .

[65]  S. Abbott,et al.  Tectonic control on third‐order sequences in a siliciclastic ramp‐style basin: An example from the Roper Superbasin (Mesoproterozoic), northern Australia , 2000 .

[66]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[67]  D. Canfield,et al.  Sources of iron for pyrite formation in marine sediments , 1998 .

[68]  R Buick,et al.  Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia. , 1995, Chemical geology.

[69]  C. Rice,et al.  The analysis of forms of sulfur in ancient sediments and sedimentary rocks: comments and cautions , 1993 .

[70]  N. Butterfield,et al.  Palaeoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island , 1992 .

[71]  Timothy D. Herbert,et al.  CAUSES OF ANOXIA IN THE WORLD OCEAN , 1988 .

[72]  J. Zumberge Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach , 1987 .

[73]  R. Summons,et al.  Chlorobiaceae in Palaeozoic seas revealed by biological markers, isotopes and geology , 1986, Nature.

[74]  D. Canfield,et al.  The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales , 1986 .

[75]  P. Sundararaman,et al.  Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany , 1986 .

[76]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[77]  M. A. Semikhatov,et al.  Riphean and Vendian of the USSR , 1981 .

[78]  K. Turekian,et al.  Distribution of the Elements in Some Major Units of the Earth's Crust , 1961 .