Generic Global Aerodynamic Model for Aircraft

Multivariate-orthogonal-function modeling was applied to wind-tunnel databases for eight different aircraft to identify a generic global aerodynamic model structure that could be used for any of the aircraft. For each aircraft database and each nondimensional aerodynamic coefficient, global models were identified from multivariate polynomials in the nondimensional states and controls, using an orthogonalization procedure. A predicted-square-error criterion was used to automatically select the model terms. Modeling terms selected in at least half of the analyses, which totaled 45 terms, were retained to form the generic global aerodynamic model structure. Least squares was used to estimate the model parameters and associated uncertainty that best fit the generic global aerodynamic model structure to each database. The result was a single generic aerodynamic model structure that could be used to accurately characterize the global aerodynamics for any of the eight aircraft, simply by changing the values of t...

[1]  Steven R. Vukelich,et al.  The USAF Stability and Control Digital DATCOM. Volume I. Users Manual , 1979 .

[2]  Austin M. Murch A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure , 2008 .

[3]  Daniel P. Raymer,et al.  Aircraft Design: A Conceptual Approach , 1989 .

[4]  John V. Foster,et al.  Defining Commercial Transport Loss-of-Control: A Quantitative Approach , 2004 .

[5]  Eduardo F. D'Azevedo,et al.  Compression of magnetohydrodynamic simulation data using singular value decomposition , 2006, J. Comput. Phys..

[6]  Gerard Leng,et al.  Compression of aircraft aerodynamic database using multivariable Chebyshev polynomials , 1997 .

[7]  Eugene A. Morelli,et al.  Efficient Global Aerodynamic Modeling from Flight Data , 2012 .

[8]  Eugene A. Morelli,et al.  Nonlinear aerodynamic modeling using multivariate orthogonal functions , 1993 .

[9]  Frank L. Lewis,et al.  Aircraft Control and Simulation , 1992 .

[10]  Eugene A. Morelli,et al.  Wind Tunnel Database Development Using Modern Experiment Design and Multivariate Orthogonal Functions (Invited) , 2003 .

[11]  Eugene A. Morelli,et al.  Wind Tunnel Database Development using Modern Experiment Design and Multivariate Orthogonal Functions , 2002 .

[12]  Eugene A. Morelli,et al.  Determining the accuracy of maximum likelihood parameter estimates with colored residuals , 1994 .

[13]  Eugene A. Morelli,et al.  Accuracy of Aerodynamic Model Parameters / Estimated from Flight Test Data , 1997 .

[14]  Earl H. Dowell,et al.  Proper Orthogonal Decomposition Reduced-Order Model for Nonlinear Aeroelastic Oscillations , 2014 .

[15]  Jay P. Singh,et al.  Validation and Update of Aerodynamic Database at Extreme Flight Regimes , 2015 .

[16]  Eugene A. Morelli,et al.  A Collection of Nonlinear Aircraft Simulations in MATLAB , 2003 .

[17]  Duane T. McRuer,et al.  Aircraft Dynamics and Automatic Control , 1973 .

[18]  Eugene A. Morelli,et al.  Aircraft system identification : theory and practice , 2006 .

[19]  David G. Ward,et al.  Automated Simulation Updates based on Flight Data , 2007 .

[20]  A. Velazquez,et al.  Generation of Aerodynamics Databases Using High-Order Singular Value Decomposition , 2008 .

[21]  Ambuj K. Singh,et al.  Dimensionality Reduction for Similarity Searching in Dynamic Databases , 1999, Comput. Vis. Image Underst..

[22]  Peter R. Grant,et al.  Parameter Estimation for Extending Flight Models into Post-Stall Regime - Invited , 2016 .

[23]  Omran A. Bukhres,et al.  Data Compression in a Pharmaceutical Drug Candidate Database , 2003, Informatica.

[24]  A. Velazquez,et al.  Compression of aerodynamic databases using high-order singular value decomposition , 2010 .

[25]  E. Morelli Global nonlinear parametric modelling with application to F-16 aerodynamics , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).