Polynomial-delay Enumeration Algorithms in Set Systems

We consider a set system $(V, {\mathcal C}\subseteq 2^V)$ on a finite set $V$ of elements, where we call a set $C\in {\mathcal C}$ a component. We assume that two oracles $\mathrm{L}_1$ and $\mathrm{L}_2$ are available, where given two subsets $X,Y\subseteq V$, $\mathrm{L}_1$ returns a maximal component $C\in {\mathcal C}$ with $X\subseteq C\subseteq Y$; and given a set $Y\subseteq V$, $\mathrm{L}_2$ returns all maximal components $C\in {\mathcal C}$ with $C\subseteq Y$. Given a set $I$ of attributes and a function $\sigma:V\to 2^I$ in a transitive system, a component $C\in {\mathcal C}$ is called a solution if the set of common attributes in $C$ is inclusively maximal; i.e., $\bigcap_{v\in C}\sigma(v)\supsetneq \bigcap_{v\in X}\sigma(v)$ for any component $X\in{\mathcal C}$ with $C\subsetneq X$. We prove that there exists an algorithm of enumerating all solutions (or all components) in delay bounded by a polynomial with respect to the input size and the running times of the oracles.

[1]  T. Uno Two General Methods to Reduce Delay and Change of Enumeration Algorithms , 2003 .

[2]  Hiroshi Nakashima,et al.  Reducing Redundant Search in Parallel Graph Mining Using Exceptions , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[3]  Kazuhisa Makino,et al.  New Algorithms for Enumerating All Maximal Cliques , 2004, SWAT.

[4]  Hiroshi Nakashima,et al.  Parallelization of Extracting Connected Subgraphs with Common Itemsets , 2014 .

[5]  Hiroshi Nagamochi,et al.  COOMA: A Components Overlaid Mining Algorithm for Enumerating Connected Subgraphs with Common Itemsets , 2019, J. Graph Algorithms Appl..

[6]  Hiroshi Nagamochi,et al.  Design of Polynomial-delay Enumeration Algorithms in Transitive Systems , 2020, ArXiv.

[7]  Shingo Okuno Parallelization of Graph Mining using Backtrack Search Algorithm , 2017 .

[8]  Mohammed Alokshiya,et al.  A linear delay algorithm for enumerating all connected induced subgraphs , 2019, BMC Bioinformatics.

[9]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[10]  Jun Sese,et al.  Mining networks with shared items , 2010, CIKM.

[11]  Jun Sese,et al.  Identification of active biological networks and common expression conditions , 2008, 2008 8th IEEE International Conference on BioInformatics and BioEngineering.

[12]  Eugene L. Lawler,et al.  Generating all Maximal Independent Sets: NP-Hardness and Polynomial-Time Algorithms , 1980, SIAM J. Comput..

[13]  Takeaki Uno,et al.  New polynomial delay bounds for maximal subgraph enumeration by proximity search , 2019, STOC.

[14]  Roberto Grossi,et al.  Sublinear-Space and Bounded-Delay Algorithms for Maximal Clique Enumeration in Graphs , 2019, Algorithmica.

[15]  Yehoshua Sagiv,et al.  Generating all maximal induced subgraphs for hereditary and connected-hereditary graph properties , 2008, J. Comput. Syst. Sci..

[16]  Roberto Grossi,et al.  Listing Maximal Subgraphs Satisfying Strongly Accessible Properties , 2019, SIAM J. Discret. Math..