Central limit theorems for empirical andU-processes of stationary mixing sequences

AbstractThis paper gives sufficient conditions for the weak convergence to Gaussian processes of empirical processes andU-processes from stationary β mixing sequences indexed byV-C subgraph classes of functions. If the envelope function of theV-C subgraph class is inLp for some 2<p<∞, we obtain a uniform central limit theorem for the empirical process under the β mixing condition $$k^{p/(p - 2)} (\log k)^{2(p - 1)/(p - 2)} \beta _k \to 0 as k \to \infty $$ In the case that the functions in theV-C subgraph class are uniformly bounded, we obtain uniform central limit theorems for the empirical process and theU-process, provided that the decay rate of the β mixing coefficient satisfies βk=O(k−r) for somer>1. These conditions are almost minimal.

[1]  S. Bernstein Sur l'extension du théoréme limite du calcul des probabilités aux sommes de quantités dépendantes , 1927 .

[2]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[3]  V. Volkonskii,et al.  Some Limit Theorems for Random Functions. II , 1959 .

[4]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[5]  I. Ibragimov,et al.  Some Limit Theorems for Stationary Processes , 1962 .

[6]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[7]  R. Dudley The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .

[8]  A. Bonami Ensembles $\Lambda (p)$ dans le dual de $D^\infty $ , 1968 .

[9]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[10]  K. Yoshihara Limiting behavior of U-statistics for stationary, absolutely regular processes , 1976 .

[11]  R. Dudley Central Limit Theorems for Empirical Measures , 1978 .

[12]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[13]  D. Pollard A central limit theorem for empirical processes , 1982, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[14]  G. Pisier Some applications of the metric entropy condition to harmonic analysis , 1983 .

[15]  D. Pollard Convergence of stochastic processes , 1984 .

[16]  R. Dudley A course on empirical processes , 1984 .

[17]  E. Giné,et al.  Some Limit Theorems for Empirical Processes , 1984 .

[18]  École d'été de probabilités de Saint-Flour,et al.  École d'Été de Probabilités de Saint-Flour XII - 1982 , 1984 .

[19]  E. Eberlein Weak convergence of partial sums of absolutely regular sequences , 1984 .

[20]  Richard C. Bradley,et al.  On the Central Limit Question Under Absolute Regularity , 1985 .

[21]  J. Yukich Rates of convergence for classes of functions: the non-i.i.d. case , 1986 .

[22]  P. Massart Rates of convergence in the central limit theorem for empirical processes , 1986 .

[23]  D. Pollard,et al.  $U$-Processes: Rates of Convergence , 1987 .

[24]  V. Dobric,et al.  The central limit theorem for stochastic processes II , 1988 .

[25]  Deborah Nolan,et al.  Functional Limit Theorems for $U$-Processes , 1988 .

[26]  Donald W. K. Andrews,et al.  An empirical process central limit theorem for dependent non-identically distributed random variables , 1989 .

[27]  Alan J. Lee,et al.  U-Statistics: Theory and Practice , 1990 .

[28]  J. Hoffmann-jorgensen Stochastic processes on Polish spaces , 1991 .

[29]  A. Dembo,et al.  On Uniform Convergence for Dependent Processes , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.

[30]  V. Peña Decoupling and Khintchine's Inequalities for $U$-Statistics , 1992 .

[31]  Emmanuel Rio,et al.  Covariance inequalities for strongly mixing processes , 1993 .

[32]  E. Giné,et al.  Limit Theorems for $U$-Processes , 1993 .

[33]  Pascal Massart,et al.  The functional central limit theorem for strongly mixing processes , 1994 .