Central limit theorems for empirical andU-processes of stationary mixing sequences
暂无分享,去创建一个
[1] S. Bernstein. Sur l'extension du théoréme limite du calcul des probabilités aux sommes de quantités dépendantes , 1927 .
[2] W. Hoeffding. A Class of Statistics with Asymptotically Normal Distribution , 1948 .
[3] V. Volkonskii,et al. Some Limit Theorems for Random Functions. II , 1959 .
[4] A. Kolmogorov,et al. Entropy and "-capacity of sets in func-tional spaces , 1961 .
[5] I. Ibragimov,et al. Some Limit Theorems for Stationary Processes , 1962 .
[6] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[7] R. Dudley. The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .
[8] A. Bonami. Ensembles $\Lambda (p)$ dans le dual de $D^\infty $ , 1968 .
[9] I. Ibragimov,et al. Independent and stationary sequences of random variables , 1971 .
[10] K. Yoshihara. Limiting behavior of U-statistics for stationary, absolutely regular processes , 1976 .
[11] R. Dudley. Central Limit Theorems for Empirical Measures , 1978 .
[12] R. Serfling. Approximation Theorems of Mathematical Statistics , 1980 .
[13] D. Pollard. A central limit theorem for empirical processes , 1982, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[14] G. Pisier. Some applications of the metric entropy condition to harmonic analysis , 1983 .
[15] D. Pollard. Convergence of stochastic processes , 1984 .
[16] R. Dudley. A course on empirical processes , 1984 .
[17] E. Giné,et al. Some Limit Theorems for Empirical Processes , 1984 .
[18] École d'été de probabilités de Saint-Flour,et al. École d'Été de Probabilités de Saint-Flour XII - 1982 , 1984 .
[19] E. Eberlein. Weak convergence of partial sums of absolutely regular sequences , 1984 .
[20] Richard C. Bradley,et al. On the Central Limit Question Under Absolute Regularity , 1985 .
[21] J. Yukich. Rates of convergence for classes of functions: the non-i.i.d. case , 1986 .
[22] P. Massart. Rates of convergence in the central limit theorem for empirical processes , 1986 .
[23] D. Pollard,et al. $U$-Processes: Rates of Convergence , 1987 .
[24] V. Dobric,et al. The central limit theorem for stochastic processes II , 1988 .
[25] Deborah Nolan,et al. Functional Limit Theorems for $U$-Processes , 1988 .
[26] Donald W. K. Andrews,et al. An empirical process central limit theorem for dependent non-identically distributed random variables , 1989 .
[27] Alan J. Lee,et al. U-Statistics: Theory and Practice , 1990 .
[28] J. Hoffmann-jorgensen. Stochastic processes on Polish spaces , 1991 .
[29] A. Dembo,et al. On Uniform Convergence for Dependent Processes , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.
[30] V. Peña. Decoupling and Khintchine's Inequalities for $U$-Statistics , 1992 .
[31] Emmanuel Rio,et al. Covariance inequalities for strongly mixing processes , 1993 .
[32] E. Giné,et al. Limit Theorems for $U$-Processes , 1993 .
[33] Pascal Massart,et al. The functional central limit theorem for strongly mixing processes , 1994 .