Wasserstein and total variation distance between marginals of L\'evy processes

We present upper bounds for the Wasserstein distance of order $p$ between the marginals of L\'evy processes, including Gaussian approximations for jumps of infinite activity. Using the convolution structure, we further derive upper bounds for the total variation distance between the marginals of L\'evy processes. Connections to other metrics like Zolotarev and Toscani-Fourier distances are established. The theory is illustrated by concrete examples and an application to statistical lower bounds.

[1]  V. V. Petrov Sums of Independent Random Variables , 1975 .

[2]  C. Givens,et al.  A class of Wasserstein metrics for probability distributions. , 1984 .

[3]  J. Mémin,et al.  Distance de Hellinger-Kakutani des lois correspondant à deux processus à accroissements indépendants , 1985 .

[4]  Friedrich Liese,et al.  Estimates of Hellinger integrals of infinitely divisible distributions , 1987, Kybernetika.

[5]  Bernt Wennberg,et al.  Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation , 1995 .

[6]  Виктор Макарович Круглов,et al.  Рецензия на книгу Vladimir М. Zolotarev “Modern Theory of Summation of Random Variables”@@@Book review: Vladimir M. Zolotarev “Modern Theory of Summation of Random Variables” , 1999 .

[7]  Expansion of transition distributions of Lévy processes in small time , 2002 .

[8]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[9]  Michael H. Neumann,et al.  Nonparametric estimation for L\'evy processes from low-frequency observations , 2007, 0709.2007.

[10]  Jean Jacod,et al.  Testing for Jumps in a Discretely Observed Process , 2007 .

[11]  G. Toscani,et al.  Contractive Probability Metrics and Asymptotic Behavior of Dissipative Kinetic Equations , 2007 .

[12]  C. Villani Optimal Transport: Old and New , 2008 .

[13]  J. Jacod,et al.  Testing for Jumps in a Discretely Observed Process , 2009, 0903.0226.

[14]  Nicolas Fournier,et al.  Simulation and approximation of Lévy-driven stochastic differential equations , 2009, 0901.3082.

[15]  E. Rio Upper bounds for minimal distances in the central limit theorem , 2009 .

[16]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[17]  Jean Jacod,et al.  A remark on the rates of convergence for integrated volatility estimation in the presence of jumps , 2012, 1209.4173.

[18]  Jan Gairing,et al.  Coupling distances between Lévy measures and applications to noise sensitivity of SDE , 2015 .

[19]  Thomas Bonis Rates in the Central Limit Theorem and diffusion approximation via Stein's Method , 2015, 1506.06966.