Wasserstein and total variation distance between marginals of L\'evy processes
暂无分享,去创建一个
[1] V. V. Petrov. Sums of Independent Random Variables , 1975 .
[2] C. Givens,et al. A class of Wasserstein metrics for probability distributions. , 1984 .
[3] J. Mémin,et al. Distance de Hellinger-Kakutani des lois correspondant à deux processus à accroissements indépendants , 1985 .
[4] Friedrich Liese,et al. Estimates of Hellinger integrals of infinitely divisible distributions , 1987, Kybernetika.
[5] Bernt Wennberg,et al. Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation , 1995 .
[6] Виктор Макарович Круглов,et al. Рецензия на книгу Vladimir М. Zolotarev “Modern Theory of Summation of Random Variables”@@@Book review: Vladimir M. Zolotarev “Modern Theory of Summation of Random Variables” , 1999 .
[7] Expansion of transition distributions of Lévy processes in small time , 2002 .
[8] Alison L Gibbs,et al. On Choosing and Bounding Probability Metrics , 2002, math/0209021.
[9] Michael H. Neumann,et al. Nonparametric estimation for L\'evy processes from low-frequency observations , 2007, 0709.2007.
[10] Jean Jacod,et al. Testing for Jumps in a Discretely Observed Process , 2007 .
[11] G. Toscani,et al. Contractive Probability Metrics and Asymptotic Behavior of Dissipative Kinetic Equations , 2007 .
[12] C. Villani. Optimal Transport: Old and New , 2008 .
[13] J. Jacod,et al. Testing for Jumps in a Discretely Observed Process , 2009, 0903.0226.
[14] Nicolas Fournier,et al. Simulation and approximation of Lévy-driven stochastic differential equations , 2009, 0901.3082.
[15] E. Rio. Upper bounds for minimal distances in the central limit theorem , 2009 .
[16] 佐藤 健一. Lévy processes and infinitely divisible distributions , 2013 .
[17] Jean Jacod,et al. A remark on the rates of convergence for integrated volatility estimation in the presence of jumps , 2012, 1209.4173.
[18] Jan Gairing,et al. Coupling distances between Lévy measures and applications to noise sensitivity of SDE , 2015 .
[19] Thomas Bonis. Rates in the Central Limit Theorem and diffusion approximation via Stein's Method , 2015, 1506.06966.