The Existence of Four HMOLS with Equal Sized Holes

In this paper, we present several new constructions for k holey mutually orthogonal Latin squares (HMOLS) of type gn. We concentrate mainly on k=4; here, for all but two values of n, namely 6 and 15, only a finite number of unsolved cases remain. Some new sets of 5 and 6 HMOLS are also given, in particular 5 HMOLS(2q) for q≥63 or q an odd prime power between 6 and 62, plus 6 HMOLS(4q)for q an odd prime power between 8 and 60.

[1]  R. Julian R. Abel,et al.  Almost resolvable perfect Mendelsohn designs with block size five , 2002, Discret. Appl. Math..

[2]  Charles J. Colbourn,et al.  Construction Techniques for Mutually Orthogonal Latin Squares , 1995 .

[3]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[4]  R. Julian R. Abel,et al.  Existence of Steiner seven-cycle systems , 2002, Discret. Math..

[5]  Mieczyslaw Wojtas Three new constructions of mutually orthogonal Latin squares , 2000 .

[6]  Lie Zhu,et al.  Existence of three HMOLS of types hn and 2n31 , 1996, Discret. Math..

[7]  R. Julian R. Abel,et al.  Existence of Incomplete Transversal Designs with Block Size Five and Any Index λ , 1997, Des. Codes Cryptogr..

[8]  Frank E. Bennett,et al.  Perfect Mendelsohn designs with block size six , 2000 .

[9]  R. Julian R. Abel Some new BIBDs with block size 7 , 2000 .

[10]  R. Julian R. Abel,et al.  Modified group divisible designs with block size 5 and lambda=1 , 2002, Discret. Math..

[11]  R. Julian R. Abel,et al.  Resolvable perfect Mendelsohn designs with block size five , 2002, Discret. Math..

[12]  Esther R. Lamken The existence of 3 orthogonal partitioned incomplete Latin squares of type tn , 1991, Discret. Math..

[13]  Douglas R. Stinson,et al.  Mols with holes , 1983, Discret. Math..

[14]  Haim Hanani BIBD's with block-size seven , 1989, Discret. Math..

[15]  Gennian Ge,et al.  Some new HSOLSSOMs of types hn and 1m u1 , 2001 .

[16]  R. Julian R. Abel,et al.  Direct constructions for certain types of HMOLS , 1998, Discret. Math..

[17]  A. E. Brouwer,et al.  stichting mathematisch centrum , 2006 .

[18]  Douglas R. Stinson,et al.  On the existence of MOLS with equal-sized holes , 1987 .

[19]  R. Julian R. Abel,et al.  Some new RBIBDs with block size 5 and PBDs with block sizes ≡1 mod 5 , 1997, Australas. J Comb..

[20]  Ronald D. Baker An Elliptic Semiplane , 1978, J. Comb. Theory, Ser. A.