Defect Modes of a Two-Dimensional Photonic Crystal in an Optically Thin Dielectric Slab

We present a three-dimensional finite-difference time-domain analysis of localized defect modes in an optically thin dielectric slab that is patterned with a two-dimensional array of air holes. The symmetry, quality factor, and radiation pattern of the defect modes and their dependence on the slab thickness are investigated.

[1]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[2]  K. Chamberlin,et al.  Modeling good conductors using the finite-difference, time-domain technique , 1995 .

[3]  A. Scherer,et al.  Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization , 1991 .

[4]  Thomas F. Krauss,et al.  Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths , 1996, Nature.

[5]  Wolfgang J. R. Hoefer,et al.  The Finite-Difference-Time-Domain Method and its Application to Eigenvalue Problems , 1986 .

[6]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[7]  Amnon Yariv,et al.  Lasers incorporating 2D photonic bandgap mirrors , 1996 .

[8]  Chan,et al.  Order-N spectral method for electromagnetic waves. , 1995, Physical review. B, Condensed matter.

[9]  J. Joannopoulos,et al.  Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency. , 1996, Physical review. B, Condensed matter.

[10]  Seng-Tiong Ho,et al.  Spontaneous emission from excitons in cylindrical dielectric waveguides and the spontaneous-emission factor of microcavity ring lasers , 1993 .

[11]  Henry I. Smith,et al.  Photonic-bandgap microcavities in optical waveguides , 1997, Nature.

[12]  Thomas,et al.  Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator. , 1987, Physical review letters.

[13]  P. M. Platzman,et al.  Microwave propagation in two-dimensional dielectric lattices. , 1991, Physical review letters.

[14]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[15]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[16]  Daniel Kleppner,et al.  Inhibited Spontaneous Emission , 1981 .

[17]  H. Hirayama,et al.  Optical characteristics of GaAs 2D photonic bandgap crystal fabricated by selective MOVPE , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.

[18]  Sakoda Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices. , 1995, Physical review. B, Condensed matter.

[19]  Eli Yablonovitch,et al.  Lithographic Band Gap Tuning in Photonic Band Gap Crystals , 1996 .

[20]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[21]  A. F. J. Levi,et al.  Whispering-gallery mode microdisk lasers , 1992 .

[22]  A. Maradudin,et al.  Photonic band structure of two-dimensional systems: The triangular lattice. , 1991, Physical review. B, Condensed matter.

[23]  Wolfgang Ehrfeld,et al.  Fabrication of photonic crystals by deep x-ray lithography , 1997 .

[24]  M. Tinkham Group Theory and Quantum Mechanics , 1964 .

[25]  A. Taflove,et al.  Nanofabrication of 1-D photonic bandgap structures along a photonic wire , 1996, IEEE Photonics Technology Letters.

[26]  Gunnar Björk,et al.  Analysis of semiconductor microcavity lasers using rate equations , 1991 .

[27]  H. Yokoyama,et al.  Physics and Device Applications of Optical Microcavities , 1992, Science.

[28]  J. Joannopoulos,et al.  Donor and acceptor modes in photonic band structure. , 1991, Physical review letters.

[29]  Amnon Yariv,et al.  Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities , 1998 .

[30]  B. Vogele,et al.  Waveguide microcavity based on photonic microstructures , 1997, IEEE Photonics Technology Letters.

[31]  Inoue,et al.  Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement. , 1996, Physical review. B, Condensed matter.

[32]  A. F. J. Levi,et al.  Room temperature operation of submicrometre radius disk laser , 1993 .

[33]  Toshihiko Baba,et al.  Photonic crystals and microdisk cavities based on GaInAsP-InP system , 1997 .

[34]  Toshihiko Baba,et al.  Fabrication and photoluminescence studies of GaInAsP/InP 2-dimensional photonic crystals , 1996 .

[35]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[36]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[37]  Sadao Adachi,et al.  Material parameters of In1−xGaxAsyP1−y and related binaries , 1982 .

[38]  Peter Davis,et al.  Whispering gallery mode lasers , 2000 .

[39]  Thomas F. Krauss,et al.  Fabrication of 2-D photonic bandgap structures in GaAs/AlGaAs , 1994 .

[40]  P. Dapkus,et al.  Experimental verification of strain benefits in 1.5- mu m semiconductor lasers by carrier lifetime and gain measurements , 1992, IEEE Photonics Technology Letters.

[41]  Amnon Yariv,et al.  Photonic bandgap membrane microresonator , 1998 .

[42]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[43]  Timothy A. Birks,et al.  Photonic band structure of guided bloch modes in high index films fully etched through with periodic microstructure , 1996 .

[44]  Microfabrication below 10 nm , 1990 .