Laplace based approximate posterior inference for differential equation models

[1]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[2]  Dirk Husmeier,et al.  Controversy in mechanistic modelling with Gaussian processes , 2015, ICML.

[3]  Abhishek K Gupta,et al.  Numerical Methods using MATLAB , 2014, Apress.

[4]  David Barber,et al.  Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations , 2014, ICML.

[5]  Dirk Husmeier,et al.  ODE parameter inference using adaptive gradient matching with Gaussian processes , 2013, AISTATS.

[6]  L Wang,et al.  Robust Estimation for Ordinary Differential Equation Models , 2011, Biometrics.

[7]  Giles Hooker,et al.  Parameterizing state–space models for infectious disease dynamics by generalized profiling: measles in Ontario , 2011, Journal of The Royal Society Interface.

[8]  Nicolas Bacaër,et al.  A Short History of Mathematical Population Dynamics , 2010 .

[9]  Hulin Wu,et al.  Sieve Estimation of Constant and Time-Varying Coefficients in Nonlinear Ordinary Differential Equation Models by Considering Both Numerical Error and Measurement Error. , 2010, Annals of statistics.

[10]  Karline Soetaert,et al.  Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME , 2010 .

[11]  Giles Hooker,et al.  Forcing Function Diagnostics for Nonlinear Dynamics , 2009, Biometrics.

[12]  Jiguo Cao,et al.  Generalized profiling estimation for global and adaptive penalized spline smoothing , 2009, Comput. Stat. Data Anal..

[13]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[14]  Neil D. Lawrence,et al.  Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes , 2008, NIPS.

[15]  Jiguo Cao,et al.  Estimating a Predator‐Prey Dynamical Model with the Parameter Cascades Method , 2008, Biometrics.

[16]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[17]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[18]  Hulin Wu,et al.  Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System , 2006, Biometrics.

[19]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[20]  S. Ellner,et al.  Crossing the hopf bifurcation in a live predator-prey system. , 2000, Science.

[21]  J. O. Ramsay,et al.  Functional Data Analysis (Springer Series in Statistics) , 1997 .

[22]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[23]  A. Gelman,et al.  Physiological Pharmacokinetic Analysis Using Population Modeling and Informative Prior Distributions , 1996 .

[24]  L. Shampine,et al.  Numerical Solution of Ordinary Differential Equations. , 1995 .

[25]  Ross D. Shachter,et al.  Laplace's Method Approximations for Probabilistic Inference in Belief Networks with Continuous Variables , 1994, UAI.

[26]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[27]  J. Varah A Spline Least Squares Method for Numerical Parameter Estimation in Differential Equations , 1982 .

[28]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[29]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[30]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[31]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[32]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[33]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[34]  R. Palais,et al.  Differential Equations, Mechanics, and Computation , 2012 .

[35]  Simon P. Wilson,et al.  Grid Based Bayesian Inference for Stochastic Differential Equation Models , 2011 .

[36]  Nicolas Bacaër,et al.  Verhulst and the logistic equation (1838) , 2011 .

[37]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[38]  Giles Hooker,et al.  CollocInfer: An R Library for Collocation Inference for Continuous{ and Discrete{Time Dynamic Systems , 2010 .

[39]  R. Szymkiewicz Numerical Solution of Ordinary Differential Equations , 2010 .

[40]  D. Campbell,et al.  Bayesian collocation tempering and generalized profiling for estimation of parameters from differential equation models , 2007 .

[41]  U. Dieckmann,et al.  POPULATION GROWTH IN SPACE AND TIME: SPATIAL LOGISTIC EQUATIONS , 2003 .

[42]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[43]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[44]  D. Mayne Parameter estimation , 1966, Autom..