Ultralow thermal conductivity of a packed bed of crystalline nanoparticles: A theoretical study

Theoretical thermal conductivity of a packed bed of crystalline spherical nanoparticles is reported. Thermal conductivity is dominated by surface and constriction thermal resistances and surface energy of the nanoparticles. Depending on the surface energy and size of the nanoparticles, thermal conductivity of the solid phase can be smaller than the minimum thermal conductivity given by the Einstein limit. It is also shown that depending on the surface energy and size of the nanoparticles, thermal conductivity of the nanoparticle bed can be smaller than the thermal conductivity of air. The range of surface energies under which these conditions are achievable for silicon-based nanoparticle beds is reported. Finally, it is shown that nanoconstrictions are more efficient in reducing thermal conductivity than superlattices and nanowires.

[1]  Gang Chen,et al.  Thermal conductivity modeling of periodic two-dimensional nanocomposites , 2004 .

[2]  Low-temperature hydrophobic silicon wafer bonding , 2003 .

[3]  J. Boland,et al.  A generalized description of the elastic properties of nanowires. , 2006, Nano letters.

[4]  M. Kaviany,et al.  Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon , 2000 .

[5]  A. Balandin,et al.  Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers , 2005 .

[6]  Ajay P. Malshe,et al.  Young's modulus measurements of silicon nanostructures using a scanning probe system: a non-destructive evaluation approach , 2003 .

[7]  N. Mingo,et al.  Lattice thermal conductivity crossovers in semiconductor nanowires. , 2004, Physical review letters.

[8]  S. Tamura,et al.  Lattice thermal conductance in nanowires at low temperatures : Breakdown and recovery of quantization , 2005 .

[9]  S. Phillpot,et al.  Multiscale simulation of phonon transport in superlattices , 2003 .

[10]  B. N. Brockhouse,et al.  Lattice Vibrations in Silicon and Germanium , 1959 .

[11]  G. Wexler,et al.  The size effect and the non-local Boltzmann transport equation in orifice and disk geometry , 1966 .

[12]  A. Carotenuto,et al.  Experimental and Theoretical Modeling of the Effective Thermal Conductivity of Rough Steel Spheroid Packed Beds , 2003 .

[13]  K. Kawasaki,et al.  Low‐temperature thermal conduction in particle‐dispersed polyethylene , 1996 .

[14]  C. G. Fonstad,et al.  Very large radiative transfer over small distances from a black body for thermophotovoltaic applications , 2000 .

[15]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[16]  S. Garde,et al.  Thermal resistance of nanoscopic liquid-liquid interfaces: dependence on chemistry and molecular architecture. , 2005, Nano letters.

[17]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[18]  D. Cahill,et al.  Heat flow and lattice vibrations in glasses , 1989 .

[19]  D. Stone,et al.  Grain-size-dependent thermal conductivity of nanocrystalline yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition , 2000 .

[20]  G. Dharmadurai Phonon transmission theory of heat transfer through solid–gas interfaces , 1983 .

[21]  M. Robinson,et al.  Effect of nanotopography in direct wafer bonding: modeling and measurements , 2005, IEEE Transactions on Semiconductor Manufacturing.

[22]  Ulrich Gösele,et al.  The Crack Opening Method in Silicon Wafer Bonding How Useful Is It , 1997 .

[23]  G. Dharmadurai Estimation of thermal accommodation coefficients for inert gases on nuclear materials , 1983 .

[24]  R. Prasher Thermal conductivity of composites of aligned nanoscale and microscale wires and pores , 2006 .

[25]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[26]  P. Scheier,et al.  Films of silicon nanoparticles grown by gas aggregation , 2003 .

[27]  Gumbsch,et al.  Directional anisotropy in the cleavage fracture of silicon , 2000, Physical review letters.

[28]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[29]  Pohl,et al.  Thermal conductivity of amorphous solids above the plateau. , 1987, Physical review. B, Condensed matter.

[30]  Philip B. Allen,et al.  Electron transport through a circular constriction , 1999 .

[31]  T. Nakayama,et al.  Theory of thermal boundary resistance between small particles and liquid helium: Size effect on phonon conduction , 1981 .

[32]  Kenneth E. Goodson,et al.  Phonon scattering in silicon films with thickness of order 100 nm , 1999 .

[33]  Ceji Fu,et al.  Nanoscale radiation heat transfer for silicon at different doping levels , 2006 .