Evolutionary Design of Gene Networks: Forced Evolution by Genomic Parasites

The co-evolution of species with their genomic parasites (transposons) is thought to be one of the primary ways of rewiring gene regulatory networks (GRNs). We develop a framework for conducting evolutionary computations (EC) using the transposon mechanism. We find that the selective pressure of transposons can speed evolutionary searches for solutions and lead to outgrowth of GRNs (through co-option of new genes to acquire insensitivity to the attacking transposons). We test the approach by finding GRNs which can solve a fundamental problem in developmental biology: how GRNs in early embryo development can robustly read maternal signaling gradients, despite continued attacks on the genome by transposons. We observed co-evolutionary oscillations in the abundance of particular GRNs and their transposons, reminiscent of predator-prey or host-parasite dynamics.

[1]  D. Petrov,et al.  Genomic regulation of transposable elements in Drosophila. , 1995, Current opinion in genetics & development.

[2]  James A. Shapiro Transposable elements as the key to a 21st century view of evolution , 2000 .

[3]  N. Patel,et al.  Developmental evolution: insights from studies of insect segmentation. , 1994, Science.

[4]  David H. Sharp,et al.  Canalization of Gene Expression in the Drosophila Blastoderm by Gap Gene Cross Regulation , 2009, PLoS biology.

[5]  W.S. Tang,et al.  A Jumping Genes Paradigm: Theory, Verification and Applications , 2008, IEEE Circuits and Systems Magazine.

[6]  Kim-Fung Man,et al.  A Jumping Gene Paradigm for Evolutionary Multiobjective Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[7]  T. Metzinger The evolution of evolvability Ruth Garret Millikan Varieties of Meaning: The 2002 Jean Nicod Lectures , 2005, Trends in Cognitive Sciences.

[8]  W. Makałowski,et al.  Genomic scrap yard: how genomes utilize all that junk. , 2000, Gene.

[9]  W. Daniel Hillis,et al.  Co-evolving parasites improve simulated evolution as an optimization procedure , 1990 .

[10]  Alexander V. Spirov,et al.  Transposon Element Technique Applied to GA-Based John Muir's Trail Test , 1998, HPCN Europe.

[11]  F. Naef,et al.  Whole-embryo modeling of early segmentation in Drosophila identifies robust and fragile expression domains. , 2011, Biophysical journal.

[12]  David M. Umulis,et al.  Robustness of embryonic spatial patterning in Drosophila melanogaster. , 2008, Current topics in developmental biology.

[13]  A. Bucheton The relationship between the flamenco gene and gypsy in Drosophila: how to tame a retrovirus. , 1995, Trends in genetics : TIG.

[14]  Alexander V. Spirov,et al.  HOX Pro DB: the functional genomics of hox ensembles , 2002, Nucleic Acids Res..

[15]  Ralf J. Sommer,et al.  Involvement of an orthologue of the Drosophila pair-rule gene hairy in segment formation of the short germ-band embryo of Tribolium (Coleoptera) , 1993, Nature.

[16]  William H. Press,et al.  Numerical recipes , 1990 .

[17]  James A. Shapiro,et al.  Transposable elements as the key to a 21st century view of evolution , 2004, Genetica.

[18]  Alexander V. Spirov,et al.  HOX Pro: a specialized database for clusters and networks of homeobox genes , 2000, Nucleic Acids Res..

[19]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[20]  Anabela Simões,et al.  Transposition versus crossover: an empirical study , 1999 .

[21]  C. King,et al.  Modular transposition and the dynamical structure of eukaryote regulatory evolution , 2004, Genetica.

[22]  A. Spirov,et al.  In Silico Evolution of Gene Cooption in Pattern-Forming Gene Networks , 2012, TheScientificWorldJournal.

[23]  Licheng Jiao,et al.  Gene transposon based clonal selection algorithm for clustering , 2009, GECCO '09.

[24]  Jitendra Malik,et al.  PointCloudXplore: Visual Analysis of 3D Gene Expression Data Using Physical Views and Parallel Coordinates , 2006, EuroVis.

[25]  Kenneth A. De Jong,et al.  Evolving Complex Structures via Cooperative Coevolution , 1995, Evolutionary Programming.

[26]  David H. Sharp,et al.  Mechanism of eve stripe formation , 1995, Mechanisms of Development.

[27]  V. Hakim,et al.  Deriving structure from evolution: metazoan segmentation , 2007, Molecular systems biology.

[28]  B. Charlesworth,et al.  The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I. Element frequencies and distribution. , 1992, Genetical research.

[29]  David M. Holloway,et al.  Evolution in silico of genes with multiple regulatory modules on the example of the Drosophila segmentation gene hunchback , 2012, 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).

[30]  G. Odell,et al.  A genetic switch, based on negative regulation, sharpens stripes in Drosophila embryos. , 1989, Developmental genetics.

[31]  C.-Y. Lee,et al.  Adaptive evolvability via non-coding segment induced linkage , 2001 .

[32]  S. Carroll,et al.  Gene co-option in physiological and morphological evolution. , 2002, Annual review of cell and developmental biology.

[33]  Eytan Domany,et al.  Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes , 2006, BMC Genomics.

[34]  B. Charlesworth,et al.  Transposable elements in natural populations with a mixture of selected and neutral insertion sites. , 1991, Genetical research.

[35]  Brian Charlesworth,et al.  On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. , 2002, Molecular biology and evolution.

[36]  David M. Holloway,et al.  Design of a dynamic model of genes with multiple autonomous regulatory modules by evolutionary computations , 2010, ICCS.

[37]  David G. Schatz,et al.  Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system , 1998, Nature.

[38]  Tobias Friedrich,et al.  Genetic and Evolutionary Computation , 2015, Theoretical Computer Science.

[39]  R. B. Azevedo,et al.  Sexual reproduction selects for robustness and negative epistasis in artificial gene networks , 2006, Nature.

[40]  E. Costa,et al.  An Evolutionary Approach to the Zero/One Knapsack Problem: Testing Ideas from Biology , 2001 .

[41]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[42]  Anabela Simões,et al.  Using Genetic Algorithms with Asexual Transposition , 2000, GECCO.

[43]  Kim-Fung Man,et al.  A real-coding jumping gene genetic algorithm (RJGGA) for multiobjective optimization , 2007, Inf. Sci..

[44]  J. Shapiro,et al.  Repetitive DNA, genome system architecture and genome reorganization. , 2002, Research in microbiology.

[45]  David M. Holloway,et al.  New Approaches to Designing Genes by Evolution in the Computer , 2012 .

[46]  Feng Cui,et al.  Impact of Alu repeats on the evolution of human p53 binding sites , 2011, Biology Direct.

[47]  Mitchell A. Potter,et al.  EVOLVING NEURAL NETWORKS WITH COLLABORATIVE SPECIES , 2006 .

[48]  W F Reynolds,et al.  The consensus sequence of a major Alu subfamily contains a functional retinoic acid response element. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Riccardo Poli,et al.  Genetic and Evolutionary Computation , 2006, Intelligenza Artificiale.

[50]  John Reinitz,et al.  Mechanisms of gap gene expression canalization in the Drosophila blastoderm , 2011, BMC Systems Biology.

[51]  David M. Holloway,et al.  Complexification of Gene Networks by Co-evolution of Genomes and Genomic Parasites , 2012, IJCCI.

[52]  J. Dowling,et al.  Transposition of the mariner element from Drosophila mauritiana in zebrafish. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Niklas Gloeckner,et al.  From Dna To Diversity Molecular Genetics And The Evolution Of Animal Design , 2016 .

[54]  John H. Werren,et al.  The role of selfish genetic elements in eukaryotic evolution , 2001, Nature Reviews Genetics.

[55]  Juan Julián Merelo Guervós,et al.  Forced Evolution in Silico by Artificial Transposons and their Genetic Operators: The John Muir Ant Problem , 2009, ArXiv.

[56]  H. Jäckle,et al.  Mesoderm-specific B104 expression in the Drosophila embryo is mediated by internal cis-acting elements of the transposon , 1995, Chromosoma.

[57]  J. Brosius,et al.  Retroposons--seeds of evolution. , 1991, Science.

[58]  Michael A. Lones,et al.  Enzyme genetic programming , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[59]  Alexander V. Spirov,et al.  Jumping Genes-mutators Can Rise Efficacy Of Evolutionary Search , 2002, GECCO.

[60]  D. Thieffry,et al.  A logical analysis of the Drosophila gap-gene system. , 2001, Journal of theoretical biology.

[61]  B. Mcclintock,et al.  The significance of responses of the genome to challenge. , 1984, Science.

[62]  A. Spirov,et al.  Using evolutionary computations to understand the design and evolution of gene and cell regulatory networks. , 2013, Methods.

[63]  L. Altenberg The evolution of evolvability in genetic programming , 1994 .

[64]  Genetic,et al.  GECCO-99 : proceedings of the Genetic and Evolutionary Computation Conference : a joint meeting of the Eighth International Conference on Genetic Algorithms (ICGA-99) and the Fourth Annual Genetic Programming Conference (GP-99), July 13-17, 1999, Orlando, Florida , 1999 .

[65]  Paul François,et al.  A case study of evolutionary computation of biochemical adaptation , 2008, Physical biology.

[66]  Alexander V. Spirov,et al.  Self-Assemblage of Gene Nets in Evolution via Recruiting of New Netters , 1996, PPSN.

[67]  Anabela Simões,et al.  Transposition: A Biological-Inspired Mechanism to Use with Genetic Algorithms , 1999, ICANNGA.

[68]  M. Fujioka,et al.  A chromatin insulator mediates transgene homing and very long-range enhancer-promoter communication , 2009, Development.

[69]  David H. Sharp,et al.  Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors , 2009, PLoS Comput. Biol..

[70]  David H. Sharp,et al.  Dynamic control of positional information in the early Drosophila embryo , 2004, Nature.

[71]  Richard Dawkins,et al.  The Evolution of Evolvability , 1987, ALIFE.