Structural basis for the function of Clostridium difficile toxin B.

[1]  B. Ramakrishnan,et al.  Substrate-induced conformational changes in glycosyltransferases. , 2005, Trends in biochemical sciences.

[2]  H. Urlaub,et al.  Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. , 2005, Microbiology.

[3]  B. Antonny,et al.  A Phosphatidylserine-binding Site in the Cytosolic Fragment of Clostridium sordellii Lethal Toxin Facilitates Glucosylation of Membrane-bound Rac and Is Required for Cytotoxicity* , 2004, Journal of Biological Chemistry.

[4]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[5]  S. Withers,et al.  Intermediate Trapping on a Mutant Retaining α-Galactosyltransferase Identifies an Unexpected Aspartate Residue* , 2004, Journal of Biological Chemistry.

[6]  Burkhard Morgenstern,et al.  DIALIGN: multiple DNA and protein sequence alignment at BiBiServ , 2004, Nucleic Acids Res..

[7]  I. Tvaroška Molecular modeling insights into the catalytic mechanism of the retaining galactosyltransferase LgtC. , 2004, Carbohydrate research.

[8]  I. Just,et al.  Large clostridial cytotoxins. , 2004, Reviews of physiology, biochemistry and pharmacology.

[9]  Dagmar Ringe,et al.  Electronic Reprint Applied Crystallography Povscript+: a Program for Model and Data Visualization Using Persistence of Vision Ray-tracing Computer Programs Applied Crystallography Povscript+: a Program for Model and Data Visualization Using Persistence of Vision Ray-tracing , 2003 .

[10]  Fumiyasu Taniguchi,et al.  Crystal Structure of an α1,4-N-Acetylhexosaminyltransferase (EXTL2), a Member of the Exostosin Gene Family Involved in Heparan Sulfate Biosynthesis* , 2003, The Journal of Biological Chemistry.

[11]  T. Darden,et al.  Glucosaminylglycan biosynthesis: what we can learn from the X-ray crystal structures of glycosyltransferases GlcAT1 and EXTL2. , 2003, Biochemical and biophysical research communications.

[12]  A. Hall,et al.  Rho GTPases in cell biology , 2002, Nature.

[13]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[14]  G. J. Swaminathan,et al.  Structural Basis of Ordered Binding of Donor and Acceptor Substrates to the Retaining Glycosyltransferase, α-1,3-Galactosyltransferase* , 2002, The Journal of Biological Chemistry.

[15]  Patricia J Keely,et al.  RhoA biological activity is dependent on prenylation but independent of specific isoprenoid modification. , 2002, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[16]  P. Roach,et al.  Crystal structure of the autocatalytic initiator of glycogen biosynthesis, glycogenin. , 2002, Journal of molecular biology.

[17]  C. Kelly,et al.  Health care costs and mortality associated with nosocomial diarrhea due to Clostridium difficile. , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[18]  O Hindsgaul,et al.  Bovine α1,3‐galactosyltransferase catalytic domain structure and its relationship with ABO histo‐blood group and glycosphingolipid glycosyltransferases , 2001, The EMBO journal.

[19]  Stephen G. Withers,et al.  Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs , 2001, Nature Structural Biology.

[20]  J. Rini,et al.  X‐ray crystal structure of rabbit N‐acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily , 2000, The EMBO journal.

[21]  J. Rini,et al.  Glycosyltransferase structure and mechanism. , 2000, Current opinion in structural biology.

[22]  K. Aktories,et al.  Microbial toxins and the glycosylation of rho family GTPases. , 2000, Current opinion in structural biology.

[23]  I. Vetter,et al.  Structural consequences of mono-glucosylation of Ha-Ras by Clostridium sordellii lethal toxin. , 2000, Journal of molecular biology.

[24]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Maximum-likelihood Density Modification , 2022 .

[25]  S. Kuroda,et al.  An Open Conformation of Switch I Revealed by the Crystal Structure of a Mg2+-free Form of RHOA Complexed with GDP , 2000, The Journal of Biological Chemistry.

[26]  Gregory R. Hoffman,et al.  Structure of the Rho Family GTP-Binding Protein Cdc42 in Complex with the Multifunctional Regulator RhoGDI , 2000, Cell.

[27]  K. Aktories,et al.  Monoglucosylation of RhoA at Threonine 37 Blocks Cytosol-Membrane Cycling* , 1999, The Journal of Biological Chemistry.

[28]  M J Sternberg,et al.  Use of pair potentials across protein interfaces in screening predicted docked complexes , 1999, Proteins.

[29]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[30]  D E McRee,et al.  XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. , 1999, Journal of structural biology.

[31]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[32]  D. Bobak,et al.  Clostridium difficile Toxins A and B Are Cation-dependent UDP-glucose Hydrolases with Differing Catalytic Activities* , 1998, The Journal of Biological Chemistry.

[33]  M. Shirakawa,et al.  Crystal Structure of Human RhoA in a Dominantly Active Form Complexed with a GTP Analogue* , 1998, The Journal of Biological Chemistry.

[34]  K. Aktories,et al.  Chimeric Clostridial Cytotoxins: Identification of the N-Terminal Region Involved in Protein Substrate Recognition , 1998, Infection and Immunity.

[35]  M. Sternberg,et al.  Modelling protein docking using shape complementarity, electrostatics and biochemical information. , 1997, Journal of molecular biology.

[36]  K. Aktories,et al.  Localization of the Glucosyltransferase Activity of Clostridium difficile Toxin B to the N-terminal Part of the Holotoxin* , 1997, The Journal of Biological Chemistry.

[37]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[38]  D. Cussac,et al.  Ras, Rap, and Rac Small GTP-binding Proteins Are Targets for Clostridium sordellii Lethal Toxin Glucosylation (*) , 1996, The Journal of Biological Chemistry.

[39]  K. Aktories,et al.  Inactivation of Ras by Clostridium sordellii Lethal Toxin-catalyzed Glucosylation (*) , 1996, The Journal of Biological Chemistry.

[40]  M. Mann,et al.  Glucosylation of Rho proteins by Clostridium difficile toxin B , 1995, Nature.

[41]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[42]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[43]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[44]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.