A type III radio burst automatic analysis system and statistic results for a half solar cycle with Nançay Decameter Array data

Aims. We design an event recognition-analysis system that can automatically detect solar type III radio burst and can mine information of the burst from the dynamic spectra observed by Nançay Decameter Array (NDA). We investigate the frequency drift rate of type III bursts and the speed of electron beams responsible for the generation of the bursts. Methods. Several computer vision methods are used in this automatic analysis system. The Hough transform is performed to recognize the line segment associated with type III bursts in the dynamic spectra. A modified active contour model is used to track the backbone of the burst and estimate the frequency drift rate at different frequency channels. We run this system on the NDA data from 2012 to 2017, and give a statistical survey of the event number distribution, the starting and stopping frequencies of bursts, the frequency dependence of the drift rate, and the exciter speed using three corona density models. Results. The median value of the average frequency drift rates is about 6.94 MHz s−1 for 1389 simple well-isolated type III bursts detected in the frequency range 10–80 MHz of NDA observation. The frequency drift rate changes with frequency as d f/dt = −0.0672 f1.23 from a least-squares fitting. The average exciter speed is about 0.2c based the density models. We do not find any significant dependence of the drift rate and the exciter speed on the solar activity cycle.

[1]  J. Wild,et al.  Observatioas of the Spectrum of High-Intensity Solar Radiation at Metre Wavelengths. I. The Apparatus and Spectral Types of Solar Burst Observed , 1950 .

[2]  A. Poland,et al.  A study of the background corona near solar minimum , 1977 .

[3]  Yihua Yan,et al.  Radio imaging-spectroscopy observations of the Sun in decimetric and centimetric wavelengths , 2012, Proceedings of the International Astronomical Union.

[4]  P. Robinson,et al.  Fundamental and Harmonic Emission in Type III Solar Radio Bursts – I. Emission at a Single Location or Frequency , 1998 .

[5]  D. Gary,et al.  RADIO EMISSION FROM SOLAR FLARES , 1998 .

[6]  Glasgow,et al.  On the speed and acceleration of electron beams triggering interplanetary type III radio bursts , 2015, 1507.06874.

[7]  D. Mclean,et al.  Solar Radiophysics - Studies of Emission from the Sun at Metre Wavelengths , 1985 .

[8]  Long Xu,et al.  Multimodal deep learning for solar radio burst classification , 2017, Pattern Recognit..

[9]  Yihua Yan,et al.  Calibration and Data Processing for a Chinese Spectral Radioheliograph in the DecimeterWave Range , 2013 .

[10]  Peter A. Robinson,et al.  AUTOMATIC RECOGNITION OF CORONAL TYPE II RADIO BURSTS: THE AUTOMATED RADIO BURST IDENTIFICATION SYSTEM METHOD AND FIRST OBSERVATIONS , 2010 .

[11]  S. Wang,et al.  Altitude-dependent Emission of Type III Solar Radio Bursts , 2005 .

[12]  H. Reid,et al.  A review of solar type III radio bursts , 2014, 1404.6117.

[13]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  J. Bougeret,et al.  Tracing the Electron Density from the Corona to 1 au , 1998 .

[15]  K. Paulson,et al.  A general route diversity model for convergent terrestrial microwave links , 2006 .

[16]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[17]  E. Kontar,et al.  Stopping Frequency of Type III Solar Radio Bursts in Expanding Magnetic Flux Tubes , 2015, 1503.03395.

[18]  R. Stone,et al.  Type III solar radio burst storms observed at low frequencies , 1970 .

[19]  J. K. Alexander,et al.  Type III radio bursts in the outer corona , 1969 .

[20]  S. Kane Energetic electrons, type III radio bursts, and impulsive solar flare X-rays , 1981 .

[21]  E. Kontar,et al.  Statistical Survey of Type III Radio Bursts at Long Wavelengths Observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves Instruments: Radio Flux Density Variations with Frequency , 2014, 1410.2053.

[22]  J. Malville Characteristics of Type III Radio Bursts. , 1962 .

[23]  GENERATION OF TYPE III SOLAR RADIO BURSTS IN THE LOW CORONA BY DIRECT AMPLIFICATION , 2002 .

[24]  E. Kontar,et al.  The Low-High-Low Trend of Type III Radio Burst Starting Frequencies and Solar Flare Hard X-rays , 2014, 1403.1839.

[25]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[26]  L. Chen,et al.  A self‐consistent mechanism for electron cyclotron maser emission and its application to type III solar radio bursts , 2017 .

[27]  H. Alvarez,et al.  Decay time of type III solar bursts observed at kilometric wavelengths , 1973 .

[28]  Y. Leblanc,et al.  The low radio frequency limit of solar type III bursts: Ulysses observations in and out of the ecliptic , 1995 .

[29]  Iver H. Cairns,et al.  Automatic recognition of type III solar radio bursts: Automated Radio Burst Identification System method and first observations , 2009 .

[30]  Long Xu,et al.  Solar Radio Astronomical Big Data Classification , 2015, HPCA.

[31]  H. Alvarez,et al.  Solar wind density model from km-wave type III bursts , 1973 .

[32]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[33]  R. Macdowall,et al.  Electron Exciter Speeds Associated with Interplanetary Type III Solar Radio Bursts , 2015 .

[34]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[35]  D. Biesecker,et al.  Solar minimum streamer densities and temperatures using Whole Sun Month coordinated data sets , 1999 .

[36]  S. Wang,et al.  Generation of Type III Solar Radio Bursts in the Low Corona by Direct Amplification , 2002 .

[37]  P. Robinson,et al.  Quasilinear‐based simulations of bidirectional type III bursts , 2008 .

[38]  E. Kontar,et al.  Characteristics of the flare acceleration region derived from simultaneous hard X-ray and radio observations , 2011, 1102.2342.

[39]  A. Lecacheux,et al.  Observations of Powerful Type III Bursts in the Frequency Range 10 – 30 MHz , 2011 .

[40]  W. C. Erickson,et al.  Solar flares, type III radio bursts, coronal mass ejections, and energetic particles , 2002 .

[41]  D. Melrose The emission mechanisms for solar radio bursts , 1980 .

[42]  E. Kontar,et al.  Imaging spectroscopy of solar radio burst fine structures , 2017, Nature Communications.

[43]  F. Genova,et al.  A new high-grain, broadband, steerable array to study Jovian decametric emission , 1980 .

[44]  C. W. Allen Interpretation of Electron Densities from Corona Brightness , 1947 .

[45]  S. Baumbach Strahlung, Ergiebigkeit und Elektronendichte der Sonnenkorona , 1937 .

[46]  M. Lockwood,et al.  The Solar Probe Plus Mission: Humanity’s First Visit to Our Star , 2016 .

[47]  N. Raouafi,et al.  Computer Vision for the Solar Dynamics Observatory (SDO) , 2012 .

[48]  S. Krucker,et al.  A STATISTICAL STUDY OF SOLAR ELECTRON EVENTS OVER ONE SOLAR CYCLE , 2012 .