Characterization of Talagrand's like transportation-cost inequalities on the real line

[1]  N. Gozlan,et al.  A large deviation approach to some transportation cost inequalities , 2005, math/0510601.

[2]  A. Guillin,et al.  Modified logarithmic Sobolev inequalities in null curvature , 2005, math/0503585.

[3]  A. Guillin,et al.  Transportation cost-information inequalities and applications to random dynamical systems and diffusions , 2004, math/0410172.

[4]  A. Guillin,et al.  Modified logarithmic Sobolev inequalities and transportation inequalities , 2004, math/0405520.

[5]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[6]  Feng-Yu Wang Probability distance inequalities on Riemannian manifolds and path spaces , 2004 .

[7]  C. Villani Topics in Optimal Transportation , 2003 .

[8]  S. Bobkov,et al.  Hypercontractivity of Hamilton-Jacobi equations , 2001 .

[9]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[10]  S. Bobkov,et al.  Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities , 1999 .

[11]  S. Bobkov,et al.  Poincaré’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution , 1997 .

[12]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[13]  K. Marton Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .

[14]  B. Maurey Some deviation inequalities , 1990, math/9201216.

[15]  Katalin Marton,et al.  A simple proof of the blowing-up lemma , 1986, IEEE Trans. Inf. Theory.

[16]  Alexander V Kolesnikov Modified Log-sobolev Inequalities and Isoperimetry , 2006 .

[17]  M. Ledoux The concentration of measure phenomenon , 2001 .

[18]  Paul-Marie Samson,et al.  Concentration of measure inequalities for Markov chains and $\Phi$-mixing processes , 2000 .

[19]  S. Bobkov,et al.  Weak dimension-free concentration of measure , 2000 .

[20]  Djalil CHAFAÏ,et al.  Sur les in'egalit'es de Sobolev logarithmiques , 2000 .

[21]  C. Houdré,et al.  Isoperimetric constants for product probability measures , 1997 .

[22]  P. Meyer,et al.  Sur les inegalites de Sobolev logarithmiques. I , 1982 .

[23]  B. Muckenhoupt Hardy's inequality with weights , 1972 .

[24]  S. G. Bobkov,et al.  Institute for Mathematical Physics from Brunn{minkowski to Brascamp{lieb and to Logarithmic Sobolev Inequalities from Brunn-minkowski to Brascamp-lieb and to Logarithmic Sobolev Inequalities , 2022 .