Extended X-Ray Monitoring of Gravitational Lenses with Chandra and Joint Constraints on X-Ray Emission Regions

We present an X-ray photometric analysis of six gravitationally lensed quasars, with observation campaigns spanning from 5 to 14 years, measuring the total (0.83 - 21.8 keV restframe), soft (0.83 - 3.6 keV), and hard (3.6 - 21.8 keV) band image flux ratios or each epoch. Using the ratios of the model-predicted macro-magnifications as baselines, we build differential microlensing light curves and obtain joint likelihood functions for the average X-ray emission region sizes. Our analysis yields a Probability Distribution Function for the average half-light radius of the X-Ray emission region in the sample that peaks slightly above 1 gravitational radius and with nearly indistinguishable 68% confidence (one-sided) upper limits of 17.8 and 18.9 gravitational radii for the soft and hard X-ray emitting regions, assuming a mean stellar mass of 0.3 solar masses. We see hints of energy dependent microlensing between the soft and hard bands in two of the objects. In a separate analysis on the root-mean-square of the microlensing variability, we find significant differences between the soft and hard bands but the sign of the difference is not consistent across the sample. This suggests the existence of some kind of spatial structure to the X-ray emission in an otherwise extremely compact source. We also discover a correlation between the RMS microlensing variability and the average microlensing amplitude.

[1]  P. Schechter,et al.  SIZES AND TEMPERATURE PROFILES OF QUASAR ACCRETION DISKS FROM CHROMATIC MICROLENSING , 2010, 1007.1665.

[2]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[3]  G. Meylan,et al.  FURTHER EVIDENCE THAT QUASAR X-RAY EMITTING REGIONS ARE COMPACT: X-RAY AND OPTICAL MICROLENSING IN THE LENSED QUASAR Q J0158–4325 , 2012, 1205.4727.

[4]  P. Schechter,et al.  Size Is Everything: Universal Features of Quasar Microlensing with Extended Sources , 2004, astro-ph/0408195.

[5]  C. Keeton Computational Methods for Gravitational Lensing , 2001, astro-ph/0102340.

[6]  G. Meylan,et al.  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - XI. Techniques for time delay measurement in presence of microlensing , 2012, 1208.5598.

[7]  Tenerife,et al.  PROBING THE DARK MATTER RADIAL PROFILE IN LENS GALAXIES AND THE SIZE OF X-RAY EMITTING REGION IN QUASARS WITH MICROLENSING , 2015, 1502.00394.

[8]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .

[9]  E. Ofek,et al.  Spectroscopic Confirmation of the Fifth Image of SDSS J1004+4112 and Implications for the M_BH-sigma_* Relation at z=0.68 , 2008, 0808.1769.

[10]  U. Oklahoma,et al.  THE OPTICAL, ULTRAVIOLET, AND X-RAY STRUCTURE OF THE QUASAR HE 0435−1223 , 2011, 1112.0027.

[11]  A. Manchado,et al.  THE STRUCTURE OF THE ACCRETION DISK IN THE LENSED QUASAR SBS 0909+532 , 2011 .

[12]  R. Kantowski,et al.  Time delays for multiplied imaged quasars , 1975 .

[13]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[14]  C. Rusu,et al.  The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses , 2013, 1309.5408.

[15]  Astrophysics,et al.  THE SIZES OF THE X-RAY AND OPTICAL EMISSION REGIONS OF RXJ 1131–1231 , 2009, The Astrophysical Journal.

[16]  E. Falco,et al.  MICROLENSING-BASED ESTIMATE OF THE MASS FRACTION IN COMPACT OBJECTS IN LENS GALAXIES , 2009, 0910.3645.

[17]  B. Gaudi,et al.  Identifying Lensing by Substructure. I. Cusp Lenses , 2002 .

[18]  J. Wambsganss Probability distributions for the magnification of quasars due to microlensing , 1992 .

[19]  E. Zackrisson,et al.  Gravitational Lensing as a Probe of Cold Dark Matter Subhalos , 2009, 0905.4075.

[20]  Takeo Minezaki,et al.  THE LICK AGN MONITORING PROJECT: BROAD-LINE REGION RADII AND BLACK HOLE MASSES FROM REVERBERATION MAPPING OF Hβ , 2009, The Astrophysical Journal.

[21]  C. Kochanek,et al.  THE AVERAGE SIZE AND TEMPERATURE PROFILE OF QUASAR ACCRETION DISKS , 2014, 1401.2785.

[22]  E. Mediavilla,et al.  STATISTICS OF MICROLENSING CAUSTIC CROSSINGS IN Q 2237+0305: PECULIAR VELOCITY OF THE LENS GALAXY AND ACCRETION DISK SIZE , 2014, 1411.2745.

[23]  Christopher W. Morgan,et al.  THE QUASAR ACCRETION DISK SIZE–BLACK HOLE MASS RELATION , 2007, 0707.0305.

[24]  G. Meylan,et al.  Microlensing of the broad line region in 17 lensed quasars , 2012, 1206.0731.

[25]  E. Mediavilla,et al.  NEW DEVELOPMENTS ON INVERSE POLYGON MAPPING TO CALCULATE GRAVITATIONAL LENSING MAGNIFICATION MAPS: OPTIMIZED COMPUTATIONS , 2011 .

[26]  Paul L. Schechter,et al.  X-RAY AND OPTICAL FLUX RATIO ANOMALIES IN QUADRUPLY LENSED QUASARS. II. MAPPING THE DARK MATTER CONTENT IN ELLIPTICAL GALAXIES , 2011, 1108.2725.

[27]  J. Wambsganss,et al.  The Rewards of Patience: An 822 Day Time Delay in the Gravitational Lens SDSS J1004+4112 , 2007, 0710.1634.

[28]  W. Kollatschny,et al.  Broad-line region structure and kinematics in the radio galaxy 3C 120 , 2014, 1405.1588.

[29]  C. Kochanek,et al.  X-RAY MONITORING OF GRAVITATIONAL LENSES WITH CHANDRA , 2012, 1202.5304.

[30]  Institute for Advanced Study,et al.  Tests for Substructure in Gravitational Lenses , 2003, astro-ph/0302036.

[31]  E. Agol,et al.  Accepted by ApJ Preprint typeset using L ATEX style emulateapj v. 11/12/01 CHANDRA OBSERVATIONS OF QSO 2237+0305 , 2000 .

[32]  C. S. Kochanek,et al.  AN ALTERNATIVE APPROACH TO MEASURING REVERBERATION LAGS IN ACTIVE GALACTIC NUCLEI , 2010, 1008.0641.

[33]  Lectures on Gravitational Lensing , 1996, astro-ph/9606001.

[34]  Y. Yoshii,et al.  REVERBERATION MEASUREMENTS OF THE INNER RADIUS OF THE DUST TORUS IN 17 SEYFERT GALAXIES , 2014, 1406.2078.

[35]  Astronomy,et al.  Gravitational Lensing Size Scales for Quasars , 2015, 1509.05375.

[36]  M. C. Weisskopf,et al.  An Overview of the Performance and Scientific Results from the Chandra X‐Ray Observatory , 2001, astro-ph/0110308.

[37]  C. S. Kochanek,et al.  REVEALING THE STRUCTURE OF AN ACCRETION DISK THROUGH ENERGY-DEPENDENT X-RAY MICROLENSING , 2012, 1204.4480.

[38]  C. Kochanek,et al.  THE STRUCTURE OF THE X-RAY AND OPTICAL EMITTING REGIONS OF THE LENSED QUASAR Q 2237+0305 , 2013, 1301.5009.

[39]  M. C. Bentz,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. III. OPTICAL CONTINUUM EMISSION AND BROADBAND TIME DELAYS IN NGC 5548 , 2015, 1510.05648.

[40]  P. Schechter,et al.  A CALIBRATION OF THE STELLAR MASS FUNDAMENTAL PLANE AT z ∼ 0.5 USING THE MICRO-LENSING-INDUCED FLUX RATIO ANOMALIES OF MACRO-LENSED QUASARS,, , 2014, 1405.0038.

[41]  B. McLeod,et al.  The Time Delays of Gravitational Lens HE 0435–1223: An Early-Type Galaxy with a Rising Rotation Curve , 2005, astro-ph/0508070.

[42]  C. Kochanek,et al.  STRUCTURE OF THE ACCRETION DISK IN THE LENSED QUASAR Q2237+0305 FROM MULTI-EPOCH AND MULTI-WAVELENGTH NARROWBAND PHOTOMETRY , 2015, 1509.04305.

[43]  CHANDRA OBSERVATIONS OF SDSS J1004+4112: CONSTRAINTS ON THE LENSING CLUSTER AND ANOMALOUS X-RAY FLUX RATIOS OF THE QUADRUPLY IMAGED QUASAR , 2006, astro-ph/0601700.

[44]  Mark W. Bautz,et al.  Advanced CCD imaging spectrometer (ACIS) instrument on the Chandra X-ray Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[45]  C. Kochanek,et al.  MICROLENSING OF QUASAR ULTRAVIOLET IRON EMISSION , 2013, 1309.2603.

[46]  C. Kochanek Quantitative Interpretation of Quasar Microlensing Light Curves , 2003, astro-ph/0307422.

[47]  C. Kochanek,et al.  X-RAY MICROLENSING IN RXJ1131–1231 AND HE1104–1805 , 2008, 0805.4492.

[48]  Christopher S. Kochanek,et al.  The Spatial Structure of an Accretion Disk , 2007, 0707.0003.

[49]  C. Kochanek,et al.  BLACK HOLE MASS ESTIMATES BASED ON C iv ARE CONSISTENT WITH THOSE BASED ON THE BALMER LINES , 2010, 1009.1145.

[50]  C. Kochanek,et al.  Inspiration , 2012 .

[51]  U. Oklahoma,et al.  THE STRUCTURE OF HE 1104–1805 FROM INFRARED TO X-RAY , 2013, 1304.1620.

[52]  Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts , 2006, astro-ph/0603248.

[53]  E. Mediavilla,et al.  A Fast and Very Accurate Approach to the Computation of Microlensing Magnification Patterns Based on Inverse Polygon Mapping , 2006 .

[54]  C. Kochanek,et al.  THE MICROLENSING PROPERTIES OF A SAMPLE OF 87 LENSED QUASARS , 2011, 1104.2356.

[55]  G. Meylan,et al.  A CONSISTENT PICTURE EMERGES: A COMPACT X-RAY CONTINUUM EMISSION REGION IN THE GRAVITATIONALLY LENSED QUASAR SDSS J0924+0219 , 2015, 1501.07533.

[56]  M. Oguri The Mass Distribution of SDSS J1004$+$4112 Revisited , 2010, 1005.3103.

[57]  Michael E. Eyler,et al.  Simultaneous Estimation of Time Delays and Quasar Structure , 2007, 0710.2552.