Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag⁺/TiO₂: Influence of electron donating and withdrawing substituents.

[1]  Hongbin Cao,et al.  Disparate roles of doped metal ions in promoting surface oxidation of TiO2 photocatalysis , 2016 .

[2]  Hongbin Cao,et al.  Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. , 2015, Chemosphere.

[3]  P. Kluson,et al.  Semi-pilot scale environment friendly photocatalytic degradation of 4-chlorophenol with singlet oxygen species—Direct comparison with H2O2/UV-C reaction system , 2014 .

[4]  Wenjun Jiang,et al.  Dramatic visible activity in phenol degradation of TCNQ@TiO2 photocatalyst with core–shell structure , 2014 .

[5]  Xu Han,et al.  Improved Photochemical Reactivities of Ag2O/g-C3N4 in Phenol Degradation under UV and Visible Light , 2014 .

[6]  Laisheng Li,et al.  Enhanced photocatalytic ozonation of organics by g-C₃N ₄ under visible light irradiation. , 2014, Journal of hazardous materials.

[7]  Y. Xiong,et al.  Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts. , 2014, Journal of hazardous materials.

[8]  Li Wang,et al.  Synergetic promotion on photoactivity and stability of W18O49/TiO2 hybrid , 2014 .

[9]  Shaoyuan Shi,et al.  Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid , 2014 .

[10]  L. Devi,et al.  Enhanced photocatalytic activity of sulfur doped TiO2 for the decomposition of phenol: A new insight into the bulk and surface modification , 2014 .

[11]  S. Bonde,et al.  A Quantitative Structure–Reactivity Assessment of Phenols by Investigation of Rapid Iodination Kinetics Using Hydrodynamic Voltammetry: Applicability of the Hammett Equation in Aqueous Medium , 2013 .

[12]  Z. Yi,et al.  Double layered, one-pot hydrothermal synthesis of M-TiO 2 (M=Fe 3+ , Ni 2+ , Cu 2+ and Co 2+ ) and their application in photocatalysis , 2013 .

[13]  Min-hong Zhang,et al.  Hydrothermal synthesis and photocatalytic performance of metal-ions doped TiO2 , 2012 .

[14]  L. Yin,et al.  Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicals. , 2011, Journal of environmental sciences.

[15]  M. Tadé,et al.  Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment , 2011 .

[16]  D. Shah,et al.  Comparative study on nano-crystalline titanium dioxide catalyzed photocatalytic degradation of aromatic carboxylic acids in aqueous medium , 2011 .

[17]  Z. Xiong,et al.  Silver-modified mesoporous TiO2 photocatalyst for water purification. , 2011, Water research.

[18]  Xinyong Li,et al.  Electrochemically assisted photocatalytic degradation of 4-chlorophenol by ZnFe2O4-modified TiO2 nanotube array electrode under visible light irradiation. , 2010, Environmental science & technology.

[19]  Cláudia G. Silva,et al.  Photocatalytic oxidation of phenolic compounds by using a carbon nanotube-titanium dioxide composite catalyst. , 2010, ChemSusChem.

[20]  B. Hameed,et al.  Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. , 2009, Journal of hazardous materials.

[21]  T. Do,et al.  Shape-controlled synthesis of highly crystalline titania nanocrystals. , 2009, ACS nano.

[22]  R. Qiu,et al.  Role of oxygen active species in the photocatalytic degradation of phenol using polymer sensitized TiO2 under visible light irradiation. , 2009, Journal of hazardous materials.

[23]  Oğuzhan Alagöz,et al.  Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature , 2009 .

[24]  Shouxin Liu,et al.  A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. , 2008, Journal of hazardous materials.

[25]  Abdul Halim Abdullah,et al.  Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide : A review of fundamentals, progress and problems , 2008 .

[26]  G. Palmisano,et al.  Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO2 suspensions. , 2006, Chemical communications.

[27]  Ying-xu Chen,et al.  Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7 , 2005 .

[28]  H. Fu,et al.  Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. , 2005, The journal of physical chemistry. B.

[29]  J. Ryu,et al.  Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides. , 2004, Environmental science & technology.

[30]  Hyunjoon Lee,et al.  Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. , 2002, Environmental science & technology.

[31]  José Antonio Ayllón,et al.  TIO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds , 2001 .

[32]  Keiichi Tanaka,et al.  Photocatalytic degradation of sulfonated aromatics in aqueous TiO2 suspension , 1995 .

[33]  K. O’Shea,et al.  Hammett Study on the TiO2-Catalyzed Photooxidation of Para-Substituted Phenols. A Kinetic and Mechanistic Analysis , 1994 .

[34]  C. Minero,et al.  Photodegradation of dichlorophenols and trichlorophenols in TiO2 aqueous suspensions: kinetic effects of the positions of the Cl atoms and identification of the intermediates , 1993 .

[35]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[36]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[37]  S H Unger,et al.  "Aromatic" substituent constants for structure-activity correlations. , 1973, Journal of medicinal chemistry.

[38]  J. Yi,et al.  Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation , 2014 .

[39]  C. Pulgarin,et al.  Photocatalytic degradation of p-halophenols in TiO2 aqueous suspensions: halogen effect on removal rate, aromatic intermediates and toxicity variations. , 2006, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[40]  P. Kamat,et al.  Radiolytic and TiO2-Assisted Photocatalytic Degradation of 4-Chlorophenol. A Comparative Study , 1994 .