Irreducible decomposition for Markov processes

Abstract We prove an irreducible decomposition for Markov processes associated with quasi-regular symmetric Dirichlet forms or local semi-Dirichlet forms under the absolute continuity condition of transition probability with respect to the underlying measure. We do not assume the conservativeness nor the existence of invariant measures for the processes. As applications, we establish a concrete expression for Chacon-Ornstein type ratio ergodic theorem for such Markov processes and show a compactness of semi-groups under the Green-tightness of measures in the framework of symmetric resolvent strong Feller processes without irreducibility.

[1]  K. Kuwae,et al.  A refinement of analytic characterizations of gaugeability for generalized Feynman–Kac functionals , 2016 .

[2]  Zhi-Ming Ma,et al.  Markov processes associated with semi-Dirichlet forms , 1995 .

[3]  The uniqueness of symmetrizing measure of Markov processes , 2010 .

[4]  Zhen-Qing Chen,et al.  Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-independence of spectral radius for generalized , 2018, Mathematische Annalen.

[5]  R. Zaharopol An Ergodic Decomposition Defined by Transition Probabilities , 2008 .

[6]  J. Doob,et al.  Applications to analysis of a topological definition of smallness of a set , 1966 .

[7]  Liping Li,et al.  Regular Dirichlet extensions of one-dimensional Brownian motion , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[8]  B. Jamison Ergodic decompositions induced by certain Markov operators , 1965 .

[10]  François Dufour,et al.  Stability and Ergodicity of Piecewise Deterministic Markov Processes , 2008 .

[11]  P. Fitzsimmons The quasi-sure ratio ergodic theorem , 1998 .

[12]  K. Kuwae Maximum Principles for Subharmonic Functions Via Local Semi-Dirichlet Forms , 2008, Canadian Journal of Mathematics.

[13]  R. Getoor,et al.  A weak quasi-Lindelöf property and quasi-fine supports of measures , 1995 .

[14]  P. Fitzsimmons On the Quasi-regularity of Semi-Dirichlet Forms , 2001 .

[15]  M. Takeda Compactness of symmetric Markov semigroups and boundedness of eigenfunctions , 2019, Transactions of the American Mathematical Society.

[16]  M. Fukushima Almost polar sets and an ergodic theorem , 1974 .

[17]  On the ergodic decomposition for a class of Markov chains , 2005 .

[18]  Ergodic properties and ergodic decompositions of continuous-time Markov processes , 2006, Journal of Applied Probability.

[19]  Zhi-Ming Ma,et al.  Introduction to the theory of (non-symmetric) Dirichlet forms , 1992 .

[20]  A. Garsia,et al.  Topics in almost everywhere convergence , 1970 .

[21]  D. Worm,et al.  Ergodic decompositions associated with regular Markov operators on Polish spaces , 2010, Ergodic Theory and Dynamical Systems.

[22]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[23]  K. Kuwae FUNCTIONAL CALCULUS FOR DIRICHLET FORMS , 1998 .

[24]  Fine irreducibility and uniqueness of stationary distribution , 2013 .

[25]  K. Kuwae Invariant sets and ergodic decomposition of local semi-Dirichlet forms , 2010 .

[26]  D. Worm,et al.  An Ergodic Decomposition Defined by Regular Jointly Measurable Markov Semigroups on Polish Spaces , 2011 .