Irreducible decomposition for Markov processes
暂无分享,去创建一个
[1] K. Kuwae,et al. A refinement of analytic characterizations of gaugeability for generalized Feynman–Kac functionals , 2016 .
[2] Zhi-Ming Ma,et al. Markov processes associated with semi-Dirichlet forms , 1995 .
[3] The uniqueness of symmetrizing measure of Markov processes , 2010 .
[4] Zhen-Qing Chen,et al. Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-independence of spectral radius for generalized , 2018, Mathematische Annalen.
[5] R. Zaharopol. An Ergodic Decomposition Defined by Transition Probabilities , 2008 .
[6] J. Doob,et al. Applications to analysis of a topological definition of smallness of a set , 1966 .
[7] Liping Li,et al. Regular Dirichlet extensions of one-dimensional Brownian motion , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[8] B. Jamison. Ergodic decompositions induced by certain Markov operators , 1965 .
[10] François Dufour,et al. Stability and Ergodicity of Piecewise Deterministic Markov Processes , 2008 .
[11] P. Fitzsimmons. The quasi-sure ratio ergodic theorem , 1998 .
[12] K. Kuwae. Maximum Principles for Subharmonic Functions Via Local Semi-Dirichlet Forms , 2008, Canadian Journal of Mathematics.
[13] R. Getoor,et al. A weak quasi-Lindelöf property and quasi-fine supports of measures , 1995 .
[14] P. Fitzsimmons. On the Quasi-regularity of Semi-Dirichlet Forms , 2001 .
[15] M. Takeda. Compactness of symmetric Markov semigroups and boundedness of eigenfunctions , 2019, Transactions of the American Mathematical Society.
[16] M. Fukushima. Almost polar sets and an ergodic theorem , 1974 .
[17] On the ergodic decomposition for a class of Markov chains , 2005 .
[18] Ergodic properties and ergodic decompositions of continuous-time Markov processes , 2006, Journal of Applied Probability.
[19] Zhi-Ming Ma,et al. Introduction to the theory of (non-symmetric) Dirichlet forms , 1992 .
[20] A. Garsia,et al. Topics in almost everywhere convergence , 1970 .
[21] D. Worm,et al. Ergodic decompositions associated with regular Markov operators on Polish spaces , 2010, Ergodic Theory and Dynamical Systems.
[22] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[23] K. Kuwae. FUNCTIONAL CALCULUS FOR DIRICHLET FORMS , 1998 .
[24] Fine irreducibility and uniqueness of stationary distribution , 2013 .
[25] K. Kuwae. Invariant sets and ergodic decomposition of local semi-Dirichlet forms , 2010 .
[26] D. Worm,et al. An Ergodic Decomposition Defined by Regular Jointly Measurable Markov Semigroups on Polish Spaces , 2011 .