Particle radiation environment in the heliosphere: status, limitations, and recommendations

Space weather is a multidisciplinary research area connecting scientists from across heliophysics domains seeking a coherent understanding of our space environment that can also serve modern life and society's needs. COSPAR's ISWAT (International Space Weather Action Teams) 'clusters' focus attention on different areas of space weather study while ensuring the coupled system is broadly addressed via regular communications and interactions. The ISWAT cluster"H3: Radiation Environment in the Heliosphere"(https://www.iswat-cospar.org/h3) has been working to provide a scientific platform to understand, characterize and predict the energetic particle radiation in the heliosphere with the practical goal of mitigating radiation risks associated with areospace activities, satellite industry and human space explorations. In particular, present approaches help us understand the physical phenomena at large, optimizing the output of multi-viewpoint observations and pushing current models to their limits. In this paper, we review the scientific aspects of the radiation environment in the heliosphere covering four different radiation types: Solar Energetic Particles (SEPs), Ground Level Enhancement (GLE, a type of SEP events with energies high enough to trigger the enhancement of ground-level detectors), Galactic Cosmic Rays (GCRs) and Anomalous Cosmic Rays (ACRs). We focus on related advances in the research community in the past 10-20 years and what we still lack in terms of understanding and predictive capabilities. Finally we also consider some recommendations related to the improvement of both observational and modeling capabilities in the field of space radiation environment.

[1]  D. Hassler,et al.  The First Ground Level Enhancement Seen on Three Planetary Surfaces: Earth, Moon, and Mars , 2023, Geophysical Research Letters.

[2]  S. Oughton,et al.  A Three-dimensional Model for the Evolution of Magnetohydrodynamic Turbulence in the Outer Heliosphere , 2023, Astrophysical Journal.

[3]  T. Onsager,et al.  NOAA Space Weather Prediction Center Radiation Advisories for the International Civil Aviation Organization , 2023, Space Weather.

[4]  M. Shea,et al.  A High Time-Resolution Analysis of the Ground-Level Enhancement (GLE) of 23 February 1956 in Terms of the CSHKP Standard Flare Model , 2023, Advances in Space Research.

[5]  P. Mangeard,et al.  Improved space weather observations and modeling for aviation radiation , 2023, Frontiers in Astronomy and Space Sciences.

[6]  R. Modzelewska,et al.  Analysis of Galactic Cosmic Ray Anisotropy During the Time Period from 1996 to 2020 , 2023, Solar Physics.

[7]  H. Zou,et al.  Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere , 2022, Advances in Space Research.

[8]  Thomas Y. Chen,et al.  Galactic Cosmic Rays and Solar Energetic Particles in Cis-Lunar Space , 2022, Vol. 55, Issue 3 (Heliophysics 2024 Decadal Whitepapers).

[9]  Dustin J. Kempton,et al.  Review of Solar Energetic Particle Models , 2022, Advances in Space Research.

[10]  B. Heber,et al.  Galactic Cosmic Rays Throughout the Heliosphere and in the Very Local Interstellar Medium , 2022, Space Science Reviews.

[11]  C. Dyer,et al.  A New Model for Nowcasting the Aviation Radiation Environment With Comparisons to In Situ Measurements During GLEs , 2022, Space Weather.

[12]  Yi Xu,et al.  First Report of a Solar Energetic Particle Event Observed by China’s Tianwen-1 Mission in Transit to Mars , 2022, The Astrophysical Journal Letters.

[13]  A. Seppälä,et al.  The influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th century , 2022, Atmospheric Chemistry and Physics.

[14]  M. Marsh,et al.  Modeling the Transport of Relativistic Solar Protons along a Heliospheric Current Sheet during Historic GLE Events , 2022, The Astrophysical Journal.

[15]  D. Gary,et al.  The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona , 2022, Astronomy & Astrophysics.

[16]  V. Florinski,et al.  Theory of Cosmic Ray Transport in the Heliosphere , 2022, Space Science Reviews.

[17]  C. Schrijver,et al.  Extreme solar events , 2022, Living Reviews in Solar Physics.

[18]  B. Heber,et al.  Anomalous Cosmic Rays and Heliospheric Energetic Particles , 2022, Space Science Reviews.

[19]  B. Heber,et al.  Generic profile of a long-lived corotating interaction region and associated recurrent Forbush decrease , 2022, Astronomy & Astrophysics.

[20]  S. Poedts,et al.  Observation-based modelling of the energetic storm particle event of 14 July 2012 , 2022, Astronomy & Astrophysics.

[21]  Gang Li,et al.  Variation in Cosmic-Ray Intensity Lags Sunspot Number: Implications of Late Opening of Solar Magnetic Field , 2022, The Astrophysical Journal.

[22]  M. Potgieter,et al.  A Numerical Study of the Solar Modulation of Galactic Protons and Helium from 2006 to 2017 , 2021, The Astrophysical Journal Supplement Series.

[23]  G. Zank,et al.  On the Conservation of Turbulence Energy in Turbulence Transport Models , 2021, The Astrophysical Journal.

[24]  B. Heber,et al.  Analytic modeling of recurrent Forbush decreases caused by corotating interaction regions , 2021, Astronomy & Astrophysics.

[25]  Xiaojun Xu,et al.  Solar Modulation of Galactic Cosmic-Ray Protons Based on a Modified Force-field Approach , 2021, The Astrophysical Journal.

[26]  M. Janvier,et al.  The Two-step Forbush Decrease: A Tale of Two Substructures Modulating Galactic Cosmic Rays within Coronal Mass Ejections , 2021, The Astrophysical Journal.

[27]  Xiaoping Zhang,et al.  Comparison of Anomalous and Galactic Cosmic-Ray Oxygen at 1 au during 1997–2020 , 2021, The Astrophysical Journal Letters.

[28]  D. Hassler,et al.  Radiation environment for future human exploration on the surface of Mars: the current understanding based on MSL/RAD dose measurements , 2021, The Astronomy and Astrophysics Review.

[29]  Y. Shprits,et al.  Beating 1 Sievert: Optimal Radiation Shielding of Astronauts on a Mission to Mars , 2021 .

[30]  A. Mishev,et al.  About the Altitude Profile of the Atmospheric Cut-Off of Cosmic Rays: New Revised Assessment , 2021, Solar Physics.

[31]  T. Onsager,et al.  A Summary of National Oceanic and Atmospheric Administration Space Weather Prediction Center Proton Event Forecast Performance and Skill , 2021, Space Weather.

[32]  B. Heber,et al.  The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29 , 2021, Astronomy & Astrophysics.

[33]  J. Richardson,et al.  Hybrid Simulations of Interstellar Pickup Protons Accelerated at the Solar-wind Termination Shock at Multiple Locations , 2021, The Astrophysical Journal.

[34]  M. Lester,et al.  Galactic Cosmic Ray Modulation at Mars and beyond measured with EDACs on Mars Express and Rosetta , 2021, Astronomy & Astrophysics.

[35]  S. Oughton,et al.  Solar wind turbulence: Connections with energetic particles , 2021 .

[36]  R. Vainio,et al.  New reconstruction of event-integrated spectra (spectral fluences) for major solar energetic particle events , 2021, Astronomy & Astrophysics.

[37]  M. Meier,et al.  Radiation in the Atmosphere—A Hazard to Aviation Safety? , 2020, Atmosphere.

[38]  F. Effenberger,et al.  A Primer on Focused Solar Energetic Particle Transport , 2020, 2012.07570.

[39]  I. Usoskin,et al.  Seven Decades of Neutron Monitors (1951–2019): Overview and Evaluation of Data Sources , 2020, Journal of Geophysical Research: Space Physics.

[40]  Francesco Berrilli,et al.  Current state and perspectives of Space Weather science in Italy , 2020 .

[41]  Bing-Bing Wang,et al.  Solar modulation of cosmic proton and helium with AMS-02 , 2020, Physical Review D.

[42]  M. Boezio,et al.  Time and Charge-sign Dependence of the Heliospheric Modulation of Cosmic Rays , 2020, The Astrophysical Journal.

[43]  B. Bertucci,et al.  Numerical modeling of cosmic rays in the heliosphere: Analysis of proton data from AMS-02 and PAMELA , 2020, Physical Review D.

[44]  Xiaojun Xu,et al.  A Study of Variations of Galactic Cosmic-Ray Intensity Based on a Hybrid Data-processing Method , 2020, The Astrophysical Journal.

[45]  C. Grimani,et al.  A New Method to Model Magnetic Cloud-driven Forbush Decreases: The 2016 August 2 Event , 2020, The Astrophysical Journal.

[46]  B. Heber,et al.  First Solar Energetic Particles Measured on the Lunar Far-side , 2020, The Astrophysical Journal.

[47]  M. Jordanova,et al.  Solar modulation of the GCR flux and dose rate, observed in space between 1991 and 2019. , 2020, Life sciences in space research.

[48]  I. Usoskin,et al.  Revised GLE database: Fluences of solar energetic particles as measured by the neutron-monitor network since 1956 , 2020, Astronomy & Astrophysics.

[49]  Juan V. Rodriguez,et al.  Very high energy proton peak flux model , 2020, Journal of Space Weather and Space Climate.

[50]  Hans Andersson,et al.  Solar Intensity X-Ray and Particle Spectrometer SIXS: Instrument Design and First Results , 2020, Space Science Reviews.

[51]  D. Rothery,et al.  Investigating Mercury’s Environment with the Two-Spacecraft BepiColombo Mission , 2020, Space Science Reviews.

[52]  B. Heber,et al.  Evolution of Coronal Mass Ejections and the Corresponding Forbush Decreases: Modeling vs. Multi-Spacecraft Observations , 2020, Solar Physics.

[53]  S. Pensotti,et al.  Inference of the Local Interstellar Spectra of Cosmic-Ray Nuclei Z ≤ 28 with the GalProp–HelMod Framework , 2020, The Astrophysical journal. Supplement series.

[54]  N. E. Engelbrecht,et al.  A Fully Time-dependent Ab Initio Cosmic-Ray Modulation Model Applied to Historical Cosmic-Ray Modulation , 2020, The Astrophysical Journal.

[55]  I. Usoskin,et al.  Current status and possible extension of the global neutron monitor network , 2020, Journal of Space Weather and Space Climate.

[56]  A. Shalchi Perpendicular Transport of Energetic Particles in Magnetic Turbulence , 2020 .

[57]  A. Bruno,et al.  3D propagation of relativistic solar protons through interplanetary space , 2020, Astronomy & Astrophysics.

[58]  I. Usoskin,et al.  Updated Neutron‐Monitor Yield Function: Bridging Between In Situ and Ground‐Based Cosmic Ray Measurements , 2020, Journal of Geophysical Research: Space Physics.

[59]  R. Wimmer–Schweingruber,et al.  The Lunar Lander Neutron and Dosimetry (LND) Experiment on Chang’E 4 , 2020, Space Science Reviews.

[60]  D. Hassler,et al.  Comparing the Properties of ICME‐Induced Forbush Decreases at Earth and Mars , 2019, Journal of Geophysical Research: Space Physics.

[61]  G. Zank,et al.  ACR Proton Acceleration Associated with Reconnection Processes beyond the Heliospheric Termination Shock , 2019, The Astrophysical Journal.

[62]  T. Slaba,et al.  Characterization of Solar Energetic Particle Radiation Dose to Astronaut Crew on Deep‐Space Exploration Missions , 2019, Space Weather.

[63]  A. Cummings,et al.  Cosmic ray measurements from Voyager 2 as it crossed into interstellar space , 2019, Nature Astronomy.

[64]  K. Iskra,et al.  Features of the Galactic Cosmic Ray Anisotropy in Solar Cycle 24 and Solar Minima 23/24 and 24/25 , 2019, Solar Physics.

[65]  Petteri Nieminen,et al.  Multi-point galactic cosmic ray measurements between 1 and 4.5 AU over a full solar cycle , 2019, Annales Geophysicae.

[66]  Nasa Solar Sentinels: Report of the Science and Technology Definition Team , 2019 .

[67]  N. Gopalswamy,et al.  Statistical Study on Multispacecraft Widespread Solar Energetic Particle Events During Solar Cycle 24 , 2019, Journal of Geophysical Research: Space Physics.

[68]  J. Richardson,et al.  Voyager 2 Observations of the Anisotropy of Anomalous Cosmic Rays in the Heliosheath , 2019, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[69]  A. Petukhova,et al.  Theory of the Formation of Forbush Decrease in a Magnetic Cloud: Dependence of Forbush Decrease Characteristics on Magnetic Cloud Parameters , 2019, The Astrophysical Journal.

[70]  A. Vourlidas,et al.  Solar energetic particles in the inner heliosphere: status and open questions , 2019, Philosophical Transactions of the Royal Society A.

[71]  Bing-Bing Wang,et al.  Time-dependent solar modulation of cosmic rays from solar minimum to solar maximum , 2019, Physical Review D.

[72]  M. Potgieter,et al.  New Very Local Interstellar Spectra for Electrons, Positrons, Protons, and Light Cosmic Ray Nuclei , 2019, The Astrophysical Journal.

[73]  J. Ryan,et al.  Spectral Analysis of the September 2017 Solar Energetic Particle Events , 2019, Space weather : the international journal of research & applications.

[74]  W. Chaplin,et al.  The Behaviour of Galactic Cosmic-Ray Intensity During Solar Activity Cycle 24 , 2018, Solar Physics.

[75]  I. Usoskin,et al.  An Anisotropic Cosmic-Ray Enhancement Event on 07-June-2015: A Possible Origin , 2018, Solar Physics.

[76]  J. Raber,et al.  Space Radiation Alters Genotype–Phenotype Correlations in Fear Learning and Memory Tests , 2018, Front. Genet..

[77]  C. Russell,et al.  Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission , 2018, Space Science Reviews.

[78]  R. Vainio,et al.  First Analysis of Ground-Level Enhancement (GLE) 72 on 10 September 2017: Spectral and Anisotropy Characteristics , 2018, Solar Physics.

[79]  R. Sagdeev,et al.  Observation of Fine Time Structures in the Cosmic Proton and Helium Fluxes with the Alpha Magnetic Spectrometer on the International Space Station. , 2018, Physical review letters.

[80]  A. V. Karelin,et al.  Solar Energetic Particle Events Observed by the PAMELA Mission , 2018, The Astrophysical Journal.

[81]  Q. Yuan,et al.  Studies on Cosmic-Ray Nuclei with Voyager, ACE, and AMS-02. I. Local Interstellar Spectra and Solar Modulation , 2018, The Astrophysical Journal.

[82]  C. Consolandi,et al.  Numerical Modeling of Galactic Cosmic-Ray Proton and Helium Observed by AMS-02 during the Solar Maximum of Solar Cycle 24 , 2018, The Astrophysical Journal.

[83]  I. Usoskin,et al.  Effective Rigidity of a Polar Neutron Monitor for Recording Ground-Level Enhancements , 2018, Solar Physics.

[84]  N. E. Engelbrecht,et al.  A Simplified Ab Initio Cosmic-ray Modulation Model with Simulated Time Dependence and Predictive Capability , 2018, The Astrophysical Journal.

[85]  S. Pensotti,et al.  Deciphering the Local Interstellar Spectra of Primary Cosmic-Ray Species with HelMod , 2018, The Astrophysical journal.

[86]  M. L. Mays,et al.  Opening a Window on ICME-driven GCR Modulation in the Inner Solar System , 2018 .

[87]  G. Zank,et al.  Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion , 2018 .

[88]  D. Hassler,et al.  Modeling the Evolution and Propagation of 10 September 2017 CMEs and SEPs Arriving at Mars Constrained by Remote Sensing and In Situ Measurement , 2018, Space Weather.

[89]  M. Dierckxsens,et al.  Two solar proton fluence models based on ground level enhancement observations , 2018 .

[90]  I. Richardson Solar wind stream interaction regions throughout the heliosphere , 2018, Living reviews in solar physics.

[91]  D. Hassler,et al.  Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit , 2017, 1712.06885.

[92]  D. Hassler,et al.  Using Forbush Decreases to Derive the Transit Time of ICMEs Propagating from 1 AU to Mars , 2017, 1712.07301.

[93]  B. Heber,et al.  An Analytical Diffusion–Expansion Model for Forbush Decreases Caused by Flux Ropes , 2017, The Astrophysical Journal.

[94]  H. Koskinen,et al.  Coronal mass ejections and their sheath regions in interplanetary space , 2017, Living Reviews in Solar Physics.

[95]  M. Shea,et al.  GLE and Sub-GLE Redefinition in the Light of High-Altitude Polar Neutron Monitors , 2017, 1711.06161.

[96]  G. Zank,et al.  Cosmic Ray Diffusion Tensor throughout the Heliosphere Derived from a Nearly Incompressible Magnetohydrodynamic Turbulence Model , 2017 .

[97]  S. White,et al.  Forecasting E > 50-MeV proton events with the proton prediction system (PPS) , 2017 .

[98]  J. Gieseler,et al.  An Empirical Modification of the Force Field Approach to Describe the Modulation of Galactic Cosmic Rays Close to Earth in a Broad Range of Rigidities , 2017, 1710.10834.

[99]  J. Hoffman,et al.  Overview of galactic cosmic ray solar modulation in the AMS-02 era , 2017 .

[100]  M. Potgieter The global modulation of cosmic rays during a quiet heliosphere: A modeling perspective , 2017 .

[101]  M. L. Mays,et al.  Interplanetary coronal mass ejection observed at STEREO‐A, Mars, comet 67P/Churyumov‐Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU , 2017 .

[102]  Bruna Bertucci,et al.  Evidence for a Time Lag in Solar Modulation of Galactic Cosmic Rays , 2017, 1707.06916.

[103]  W. F. Dietrich,et al.  Why is solar cycle 24 an inefficient producer of high-energy particle events? , 2017, 1707.00485.

[104]  F. Cucinotta,et al.  Predictions of space radiation fatality risk for exploration missions. , 2017, Life sciences in space research.

[105]  G. La Vacca,et al.  Propagation of cosmic rays in heliosphere: The HelMod model , 2017, Advances in Space Research.

[106]  I. Usoskin,et al.  Heliospheric modulation of cosmic rays during the neutron monitor era: Calibration using PAMELA data for 2006–2010 , 2017, 1705.07197.

[107]  Tatsuhiko Sato,et al.  Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25 , 2017 .

[108]  R. D. Strauss,et al.  A Hitch-hiker’s Guide to Stochastic Differential Equations , 2017, Space Science Reviews.

[109]  G. Zank,et al.  Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence , 2017, The Astrophysical Journal.

[110]  B. Heber,et al.  The new local interstellar spectra and their influence on the production rates of the cosmogenic radionuclides 10Be and 14C , 2017 .

[111]  Edmond C. Roelof,et al.  Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation , 2016 .

[112]  M. Lockwood,et al.  The Solar Probe Plus Mission: Humanity’s First Visit to Our Star , 2016 .

[113]  E. Cliver FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS , 2016 .

[114]  B. Heber,et al.  Solar Energetic Particle Events with Protons Above 500 MeV Between 1995 and 2015 Measured with SOHO/EPHIN , 2016, 1611.03289.

[115]  W. Webber,et al.  GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM: VOYAGER 1 OBSERVATIONS AND MODEL RESULTS , 2016, The Astrophysical journal.

[116]  S. Oughton,et al.  A GENERALIZED TWO-COMPONENT MODEL OF SOLAR WIND TURBULENCE AND AB INITIO DIFFUSION MEAN-FREE PATHS AND DRIFT LENGTHSCALES OF COSMIC RAYS , 2016, 1609.08271.

[117]  C. Consolandi,et al.  SOLAR MODULATION OF THE LOCAL INTERSTELLAR SPECTRUM WITH VOYAGER 1, AMS-02, PAMELA, AND BESS , 2016 .

[118]  M. Desai,et al.  Large gradual solar energetic particle events , 2016, Living reviews in solar physics.

[119]  M. Potgieter,et al.  Global Gradients for Cosmic-Ray Protons in the Heliosphere During the Solar Minimum of Cycle 23/24 , 2016, 1608.01688.

[120]  Roma,et al.  NEW EVIDENCE FOR CHARGE-SIGN-DEPENDENT MODULATION DURING THE SOLAR MINIMUM OF 2006 TO 2009 , 2016, 1608.01301.

[121]  D. Ruffolo,et al.  NON-AXISYMMETRIC PERPENDICULAR DIFFUSION OF CHARGED PARTICLES AND THEIR TRANSPORT ACROSS TANGENTIAL MAGNETIC DISCONTINUITIES , 2016 .

[122]  M. L. Mays,et al.  SHOCK CONNECTIVITY IN THE 2010 AUGUST AND 2012 JULY SOLAR ENERGETIC PARTICLE EVENTS INFERRED FROM OBSERVATIONS AND ENLIL MODELING , 2016 .

[123]  P. Démoulin,et al.  Superposed epoch study of ICME sub-structures near Earth and their effects on galactic cosmic rays , 2016, 1605.08130.

[124]  N. Crosby,et al.  Extreme Geomagnetic Storms – 1868 – 2010 , 2016 .

[125]  R. Arlt,et al.  Detailed Analysis of Solar Data Related to Historical Extreme Geomagnetic Storms: 1868 – 2010 , 2016 .

[126]  I. Usoskin,et al.  Analysis of the Ground-Level Enhancements on 14 July 2000 and 13 December 2006 Using Neutron Monitor Data , 2016, Solar Physics.

[127]  N. Raouafi,et al.  LONGITUDINAL PROPERTIES OF A WIDESPREAD SOLAR ENERGETIC PARTICLE EVENT ON 2014 FEBRUARY 25: EVOLUTION OF THE ASSOCIATED CME SHOCK , 2016 .

[128]  Badruddin,et al.  Study of the Cosmic-Ray Modulation During the Passage of ICMEs and CIRs , 2016 .

[129]  Rolf Kappl,et al.  SOLARPROP: Charge-sign dependent solar modulation for everyone , 2015, Comput. Phys. Commun..

[130]  D. Hooper,et al.  A predictive analytic model for the solar modulation of cosmic rays , 2015, 1511.01507.

[131]  Donald V. Reames,et al.  What Are the Sources of Solar Energetic Particles? Element Abundances and Source Plasma Temperatures , 2015, 1510.03449.

[132]  Martin A. Lee,et al.  SCATTER-DOMINATED INTERPLANETARY TRANSPORT OF SOLAR ENERGETIC PARTICLES IN LARGE GRADUAL EVENTS AND THE FORMATION OF DOUBLE POWER-LAW DIFFERENTIAL FLUENCE SPECTRA OF GROUND-LEVEL EVENTS DURING SOLAR CYCLE 23 , 2015 .

[133]  Stanford,et al.  Solar energetic particle access to distant longitudes through turbulent field-line meandering , 2015, 1508.03164.

[134]  X. Moussas,et al.  Properties of solar energetic particle events inferred from their associated radio emission , 2015, Astronomy & Astrophysics.

[135]  S. Poedts,et al.  SEPEM: A tool for statistical modeling the solar energetic particle environment , 2015 .

[136]  A. V. Karelin,et al.  Force-field parameterization of the galactic cosmic ray spectrum : Validation for Forbush decreases , 2015 .

[137]  L. Sihver,et al.  Radiation environment at aviation altitudes and in space. , 2015, Radiation protection dosimetry.

[138]  M. L. Mays,et al.  Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars , 2015, Nature Communications.

[139]  G. Zank,et al.  THE TRANSPORT OF LOW-FREQUENCY TURBULENCE IN ASTROPHYSICAL FLOWS. II. SOLUTIONS FOR THE SUPER-ALFVÉNIC SOLAR WIND , 2015 .

[140]  T. Laitinen,et al.  CORRECTING FOR INTERPLANETARY SCATTERING IN VELOCITY DISPERSION ANALYSIS OF SOLAR ENERGETIC PARTICLES , 2015, 1504.06166.

[141]  Jiansen He,et al.  SOLAR WIND ∼20–200 keV SUPERHALO ELECTRONS AT QUIET TIMES , 2015 .

[142]  A. Vourlidas Mission to the Sun‐Earth L5 Lagrangian Point: An Optimal Platform for Space Weather Research , 2015 .

[143]  R. D. Strauss,et al.  ON ASPECTS PERTAINING TO THE PERPENDICULAR DIFFUSION OF SOLAR ENERGETIC PARTICLES , 2015, 1804.03689.

[144]  M. Casolino,et al.  PAMELA’S MEASUREMENTS OF MAGNETOSPHERIC EFFECTS ON HIGH-ENERGY SOLAR PARTICLES , 2015, 1502.00935.

[145]  Andreas Klassen,et al.  CIRCUMSOLAR ENERGETIC PARTICLE DISTRIBUTION ON 2011 NOVEMBER 3 , 2015 .

[146]  M. Dierckxsens,et al.  Relationship between Solar Energetic Particles and Properties of Flares and CMEs: Statistical Analysis of Solar Cycle 23 Events , 2014, Solar Physics.

[147]  G. Gloeckler,et al.  A test for whether or not Voyager 1 has crossed the heliopause , 2014 .

[148]  I. Daglis,et al.  Cross calibration of NOAA GOES solar proton detectors using corrected NASA IMP‐8/GME data , 2014 .

[149]  B. Heber,et al.  Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies , 2014 .

[150]  E. Christian,et al.  > 25 MeV Proton Events Observed by the High Energy Telescopes on the STEREO A and B Spacecraft and/or at Earth During the First ∼ Seven Years of the STEREO Mission , 2014 .

[151]  Christina Plainaki,et al.  THE GROUND-LEVEL ENHANCEMENT OF 2012 MAY 17: DERIVATION OF SOLAR PROTON EVENT PROPERTIES THROUGH THE APPLICATION OF THE NMBANGLE PPOLA MODEL , 2014 .

[152]  Ann R Kennedy,et al.  Biological Effects of Space Radiation and Development of Effective Countermeasures. , 2014, Life sciences in space research.

[153]  T. Slaba,et al.  GCR environmental models I: Sensitivity analysis for GCR environments , 2014 .

[154]  J. Green,et al.  Intercalibration of GOES 8–15 solar proton detectors , 2014 .

[155]  M. Potgieter Very Local Interstellar Spectra for Galactic Electrons, Protons and Helium , 2013, 1310.6133.

[156]  Francis A. Cucinotta,et al.  How Safe Is Safe Enough? Radiation Risk for a Human Mission to Mars , 2013, PloS one.

[157]  L. Miroshnichenko,et al.  Solar cosmic rays: 70 years of ground-based observations , 2013, Geomagnetism and Aeronomy.

[158]  Donald V. Reames,et al.  Particle acceleration at the Sun and in the heliosphere , 2013 .

[159]  B. Heber,et al.  Energetic-particle-flux decreases related to magnetic cloud passages as observed by the Helios 1 and 2 spacecraft , 2013 .

[160]  N. E. Engelbrecht,et al.  AN AB INITIO MODEL FOR COSMIC-RAY MODULATION , 2013 .

[161]  D. C. Hamilton,et al.  Search for the Exit: Voyager 1 at Heliosphere’s Border with the Galaxy , 2013, Science.

[162]  W. Webber,et al.  Voyager 1 Observes Low-Energy Galactic Cosmic Rays in a Region Depleted of Heliospheric Ions , 2013, Science.

[163]  T. Laitinen,et al.  Solar energetic particle drifts in the Parker spiral , 2013, 1307.2165.

[164]  M. Marsh,et al.  DRIFT-INDUCED PERPENDICULAR TRANSPORT OF SOLAR ENERGETIC PARTICLES , 2013, 1307.1585.

[165]  Marius Potgieter,et al.  Solar Modulation of Cosmic Rays , 2013, 1306.4421.

[166]  H. Moraal Cosmic-Ray Modulation Equations , 2013 .

[167]  M. Lockwood,et al.  The 22-Year Hale Cycle in Cosmic Ray Flux – Evidence for Direct Heliospheric Modulation , 2013, Solar Physics.

[168]  B. Heber,et al.  LONGITUDINAL AND RADIAL DEPENDENCE OF SOLAR ENERGETIC PARTICLE PEAK INTENSITIES: STEREO, ACE, SOHO, GOES, AND MESSENGER OBSERVATIONS , 2013 .

[169]  N. Pogorelov,et al.  GALACTIC COSMIC-RAY MODULATION IN A REALISTIC GLOBAL MAGNETOHYDRODYNAMIC HELIOSPHERE , 2013 .

[170]  G. Zank,et al.  INTERPLANETARY PROPAGATION OF SOLAR ENERGETIC PARTICLE HEAVY IONS OBSERVED AT 1 AU AND THE ROLE OF ENERGY SCALING , 2012 .

[171]  Glenn M. Mason,et al.  Power Law Distributions of Suprathermal Ions in the Quiet Solar Wind , 2012 .

[172]  S. Krucker,et al.  A STATISTICAL STUDY OF SOLAR ELECTRON EVENTS OVER ONE SOLAR CYCLE , 2012 .

[173]  M. Alania,et al.  Energy dependence of the rigidity spectrum of Forbush decrease of galactic cosmic ray intensity , 2012 .

[174]  J. Giacalone,et al.  The Acceleration Mechanism of Anomalous Cosmic Rays , 2012 .

[175]  G. Reitz,et al.  The Radiation Assessment Detector (RAD) Investigation , 2012 .

[176]  D. Reames The Two Sources of Solar Energetic Particles , 2012, 1306.3608.

[177]  W. Matthaeus,et al.  THE TRANSPORT OF LOW-FREQUENCY TURBULENCE IN ASTROPHYSICAL FLOWS. I. GOVERNING EQUATIONS , 2012 .

[178]  D. Mccomas,et al.  Heliolatitude and Time Variations of Solar Wind Structure from in situ Measurements and Interplanetary Scintillation Observations , 2011, 1112.5249.

[179]  A. Vourlidas,et al.  THE LONGITUDINAL PROPERTIES OF A SOLAR ENERGETIC PARTICLE EVENT INVESTIGATED USING MODERN SOLAR IMAGING , 2011 .

[180]  H. Spence,et al.  Revisiting two-step Forbush decreases , 2011 .

[181]  I. Richardson,et al.  Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995 – 2009 , 2011 .

[182]  G. Bazilevskaya,et al.  Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers , 2011 .

[183]  A. Papaioannou,et al.  Implementation of the ground level enhancement alert software at NMDB database , 2010 .

[184]  Martin H. Israel,et al.  RECORD-SETTING COSMIC-RAY INTENSITIES IN 2009 AND 2010 , 2010 .

[185]  J. Kota PARTICLE ACCELERATION AT NEAR-PERPENDICULAR SHOCKS: THE ROLE OF FIELD-LINE TOPOLOGY , 2010 .

[186]  F. Guo,et al.  PARTICLE ACCELERATION BY COLLISIONLESS SHOCKS CONTAINING LARGE-SCALE MAGNETIC-FIELD VARIATIONS , 2010, 1009.5461.

[187]  M. Aschwanden GeV Particle Acceleration in Solar Flares and Ground Level Enhancement (GLE) Events , 2010, 1005.0029.

[188]  J. Drake,et al.  A MAGNETIC RECONNECTION MECHANISM FOR THE GENERATION OF ANOMALOUS COSMIC RAYS , 2010 .

[189]  J. Richardson,et al.  A strong, highly-tilted interstellar magnetic field near the Solar System , 2009, Nature.

[190]  N. Pogorelov,et al.  Heliospheric asymmetries due to the action of the interstellar magnetic field , 2009 .

[191]  G. Gloeckler,et al.  The acceleration of Anomalous Cosmic Rays by stochastic acceleration in the heliosheath , 2009 .

[192]  S. Krucker,et al.  Acceleration of Relativistic Protons During the 20 January 2005 Flare and CME , 2009, 0905.1816.

[193]  A. Lazarian,et al.  A MODEL OF ACCELERATION OF ANOMALOUS COSMIC RAYS BY RECONNECTION IN THE HELIOSHEATH , 2009, 0905.1120.

[194]  R. Horne,et al.  Dynamics of the Earth’s Particle Radiation Environment , 2009 .

[195]  C. Plainaki,et al.  Neutron monitor asymptotic directions of viewing during the event of 13 December 2006 , 2009 .

[196]  C. Plainaki,et al.  Modeling the solar cosmic ray event of 13 December 2006 using ground level neutron monitor data , 2009 .

[197]  I. Usoskin A History of Solar Activity over Millennia , 2008, Living Reviews in Solar Physics.

[198]  H. Sauer,et al.  Cosmic radiation exposure of aircraft occupants on simulated high-latitude flights during solar proton events from 1 January 1986 through 1 January 2008 , 2008 .

[199]  A. Belov Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena , 2008, Proceedings of the International Astronomical Union.

[200]  J. Jokipii,et al.  Anomalous Cosmic Rays in the Heliosheath: Simulation with a Blunt Termination Shock , 2008 .

[201]  W. Webber,et al.  Anomalous Cosmic Rays in the Heliosheath , 2008 .

[202]  J. E. Humble,et al.  An Improved Model for Relativistic Solar Proton Acceleration Applied to the 2005 January 20 and Earlier Events , 2008, 0807.5053.

[203]  W. Webber,et al.  An asymmetric solar wind termination shock , 2008, Nature.

[204]  S. Krimigis,et al.  Mediation of the solar wind termination shock by non-thermal ions , 2008, Nature.

[205]  H. Sauer SEL monitoring of the earth's energetic particle radiation environment , 2008 .

[206]  A. Chilingarian,et al.  Detection of high-energy solar neutrons and protons by ground level detectors on April 15, 2001 , 2008 .

[207]  Christopher C. Balch,et al.  Updated verification of the Space Weather Prediction Center's solar energetic particle prediction model , 2008 .

[208]  D. Mccomas,et al.  Diffusive Acceleration at the Blunt Termination Shock , 2007 .

[209]  Thomas H. Zurbuchen,et al.  A New View of the Coupling of the Sun and the Heliosphere , 2007 .

[210]  A. Posner,et al.  Up to 1‐hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons , 2007 .

[211]  G. Mason 3 He-Rich Solar Energetic Particle Events , 2007 .

[212]  Victor Yanke,et al.  Modeling ground level enhancements: Event of 20 January 2005 , 2007 .

[213]  G. Qin Nonlinear Parallel Diffusion of Charged Particles: Extension to the Nonlinear Guiding Center Theory , 2007 .

[214]  Klaus Scherer,et al.  Solar and Heliospheric Modulation of Galactic Cosmic Rays , 2007 .

[215]  S. Krimigis,et al.  Radial and Longitudinal Dependence of Solar 4-13 MeV and 27-37 MeV Proton Peak Intensities and Fluences: Helios and IMP 8 Observations , 2006 .

[216]  H. Cane,et al.  Multi-Spacecraft Observations of Solar Flare Particles in the Inner Heliosphere , 2006 .

[217]  G. Zank,et al.  Particle acceleration at a rippling termination shock , 2006 .

[218]  V. Malvezzi,et al.  PAMELA: A payload for antimatter matter exploration and light-nuclei astrophysics - status and first results , 2006, 2007 IEEE Nuclear Science Symposium Conference Record.

[219]  R. Mewaldt,et al.  Role of flares and shocks in determining solar energetic particle abundances , 2006 .

[220]  Marco Durante,et al.  Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. , 2006, The Lancet. Oncology.

[221]  S. Cranmer,et al.  Ultraviolet spectroscopy of the extended solar corona , 2006 .

[222]  D. Mccomas,et al.  An explanation of the Voyager paradox: Particle acceleration at a blunt termination shock , 2006 .

[223]  T. Linde,et al.  Galactic Cosmic-Ray Modulation Using a Solar Minimum MHD Heliosphere: A Stochastic Particle Approach , 2005 .

[224]  E. C. Stone,et al.  Voyager 1 Explores the Termination Shock Region and the Heliosheath Beyond , 2005, Science.

[225]  D. C. Hamilton,et al.  Voyager 1 in the Foreshock, Termination Shock, and Heliosheath , 2005, Science.

[226]  Helen A. Mavromichalaki,et al.  Solar cosmic rays during the extremely high ground level enhancement on 23 February 1956 , 2005 .

[227]  W. F. Dietrich,et al.  Shock Geometry, Seed Populations, and the Origin of Variable Elemental Composition at High Energies in Large Gradual Solar Particle Events , 2005 .

[228]  V. Petrosian,et al.  Stochastic Acceleration of 3He and 4He in Solar Flares by Parallel-propagating Plasma Waves: General Results , 2005, astro-ph/0502341.

[229]  B. Borgia,et al.  The alpha magnetic spectrometer on the International Space Station , 2004, IEEE Transactions on Nuclear Science.

[230]  Ian G. Richardson,et al.  Energetic Particles and Corotating Interaction Regions in the Solar Wind , 2004 .

[231]  T. Sanderson,et al.  Properties of high heliolatitude solar energetic particle events and constraints on models of acceleration and propagation , 2003 .

[232]  R. Mewaldt,et al.  Two components in major solar particle events , 2003 .

[233]  E. Kyrölä,et al.  Latitudinal structure and north-south asymmetry of the solar wind from Lyman-alpha remote sensing by SWAN , 2003 .

[234]  N. Pogorelov,et al.  Galactic cosmic ray transport in the global heliosphere , 2002 .

[235]  R. Skoug,et al.  Ulysses' second fast‐latitude scan: Complexity near solar maximum and the reformation of polar coronal holes , 2002 .

[236]  E. Cliver,et al.  22 Year Patterns in the Relationship of Sunspot Number and Tilt Angle to Cosmic-Ray Intensity , 2001 .

[237]  Pim Martens,et al.  SOHO (Solar and Heliospheric Observatory) , 2000 .

[238]  J. Allen On the modulation of galactic cosmic ray intensity during solar activity cycles 19, 20, 21, 22 and early 23 , 2000 .

[239]  J. Clem,et al.  Neutron Monitor Response Functions , 2000 .

[240]  H. Cane Coronal Mass Ejections and Forbush Decreases , 2000 .

[241]  R. Mewaldt,et al.  New observations of heavy‐ion‐rich solar particle events from ACE , 1999 .

[242]  S. Krucker,et al.  On the Origin of Impulsive Electron Events Observed at 1 AU , 1999 .

[243]  C. Balch,et al.  SEC proton prediction model: verification and analysis. , 1999, Radiation measurements.

[244]  T. V. von Rosenvinge,et al.  Cosmic ray modulation and the solar magnetic field , 1999 .

[245]  S. M. Krimigis,et al.  Particle acceleration and sources in the November 1997 solar energetic particle events , 1999 .

[246]  I. Usoskin,et al.  Correlative study of solar activity and cosmic ray intensity , 1998 .

[247]  W. Matthaeus,et al.  The Cosmic Ray Diffusion Tensor in the Heliosphere , 1998 .

[248]  M. Shea,et al.  CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code , 1997 .

[249]  R. A. Mewaldt,et al.  Evidence for Multiply Charged Anomalous Cosmic Rays , 1996 .

[250]  L. Fisk Motion of the footpoints of heliospheric magnetic field lines at the Sun : Implications for recurrent energetic particle events at high heliographic latitudes , 1996 .

[251]  G. Zank Interaction of the solar wind with the local interstellar medium: a theoretical perspective , 1995 .

[252]  B. Klecker,et al.  Charge state of anomalous cosmic-ray nitrogen, oxygen, and neon: SAMPEX observations , 1995 .

[253]  J. M. Bosqued,et al.  A three-dimensional plasma and energetic particle investigation for the wind spacecraft , 1995 .

[254]  W. H. Mish,et al.  The Global Geospace Science Program and its investigations , 1995 .

[255]  Biermann,et al.  Origin of galactic cosmic rays. , 1995, Physical review. D, Particles and fields.

[256]  I. Richardson,et al.  Cosmic ray decreases and shock structure: A multispacecraft study , 1994 .

[257]  J. Wilson,et al.  Solar modulation and nuclear fragmentation effects in galactic cosmic ray transport through shielding. , 1994, Advances in space research : the official journal of the Committee on Space Research.

[258]  S. Kahler Injection profiles of solar energetic particles as functions of coronal mass ejection heights , 1994 .

[259]  S. Suess,et al.  The polar heliospheric magnetic field , 1993 .

[260]  R. D. Belian,et al.  The great solar energetic particle events of 1989 observed from geosynchronous orbit , 1992 .

[261]  S. Kane,et al.  Solar flare nuclear gamma-rays and interplanetary proton events , 1989 .

[262]  W. Webber Composition of anomalous cosmic rays , 1989 .

[263]  E. G. Stassinopoulos,et al.  The space radiation environment for electronics , 1988, Proc. IEEE.

[264]  R. A. Mewaldt,et al.  The Advanced Composition Explorer , 1988 .

[265]  Reuven Ramaty,et al.  Shock acceleration of electrons and ions in solar flares , 1985 .

[266]  D. Eichler,et al.  Cosmic ray drift, shock wave acceleration and the anomalous component of cosmic rays , 1981 .

[267]  Reuven Ramaty,et al.  An interpretation of the observed oxygen and nitrogen enhancements in low energy cosmic rays. , 1973 .

[268]  J. Simpson,et al.  A New Test for Solar Modulation Theory: the 1972 May-July Low-Energy Galactic Cosmic-Ray Proton and Helium Spectra , 1973 .

[269]  J. Winckler,et al.  Energetic solar flare X-rays observed by satellite and their correlation with solar radio and energetic particle emission. , 1968 .

[270]  S. Forbush Cosmic‐Ray Intensity Variations During Two Solar Cycles , 1958 .

[271]  S. Forbush World‐wide cosmic ray variations, 1937–1952 , 1954 .

[272]  S. Forbush,et al.  Three Unusual Cosmic-Ray Increases Possibly Due to Charged Particles from the Sun , 1946 .

[273]  V. Hess,et al.  World-wide Effect in Cosmic Ray Intensity, as Observed during a Recent Magnetic Storm , 1937, Nature.

[274]  S. Forbush On the Effects in Cosmic-Ray Intensity Observed During the Recent Magnetic Storm , 1937 .

[275]  M. Galea,et al.  Cosmic Radiation Reliability Analysis for Aircraft Power Electronics , 2024, IEEE Transactions on Transportation Electrification.

[276]  N. Marlon,et al.  Evaluation of the UMASEP-10 Version 2 Tool for Predicting All >10 MeV SEP Events of Solar Cycles 22, 23 and 24 , 2022 .

[277]  N. E. Engelbrecht,et al.  An Ab Initio Approach to Antiproton Modulation in the Inner Heliosphere , 2021 .

[278]  S. Solanki,et al.  The Solar Orbiter mission Science overview , 2021 .

[279]  A. M. Hellín,et al.  The Energetic Particle Detector-Energetic particle instrument suite for the Solar Orbiter mission , 2019 .

[280]  L. Miroshnichenko Retrospective analysis of GLEs and estimates of radiation risks , 2018 .

[281]  R. Gómez-Herrero,et al.  OBSERVATIONS OF SOLAR ENERGETIC PARTICLES FROM 3He-RICH EVENTS OVER A WIDE RANGE OF HELIOGRAPHIC LONGITUDE , 2012 .

[282]  M. Velli,et al.  A Review of Turbulence Effects in the Heliosphere and on the Fundamental Process of Reconnection , 2011 .

[283]  V. Bindi The Alpha Magnetic Spectrometer on the International Space Station , 2008 .

[284]  I. Usoskin,et al.  Cyclic variations of the heliospheric tilt angle and cosmic ray modulation , 2007 .

[285]  David Lario,et al.  SOLPENCO: A solar particle engineering code , 2006 .

[286]  J. Giacalone,et al.  Transverse Streaming Anisotropies of Charged Particles Accelerated at the Solar Wind Termination Shock , 2004 .

[287]  R. Caballero-Lopez,et al.  Limitations of the force field equation to describe cosmic ray modulation , 2004 .

[288]  A. Teufel,et al.  Analytic calculation of the parallel mean free path of heliospheric cosmic rays. II. Dynamical magnetic slab turbulence and random sweeping slab turbulence with finite wave power at small wavenumbers , 2003 .

[289]  W. Dröge Acceleration and Propagation of Solar Energetic Particles , 2003 .

[290]  L. Dorman Cosmic ray long-term variation: even-odd cycle effect, role of drifts, and the onset of cycle 23 , 2001 .

[291]  L. Barbieri,et al.  The PAMELA experiment in space , 2001 .

[292]  S. Biswas Solar Energetic Particles , 2000 .

[293]  John W. Bieber,et al.  Proton and Electron Mean Free Paths: The Palmer Consensus Revisited , 1994 .

[294]  M. Shea,et al.  History of Energetic Solar Protons for the Past Three Solar Cycles Including Cycle 22 Update , 1993 .

[295]  M. Shea,et al.  Modeling the time-intensity profile of solar flare generated particle fluxes in the inner heliosphere. , 1992, Advances in space research : the official journal of the Committee on Space Research.

[296]  M. Shea,et al.  PPS-87: a new event oriented solar proton prediction model. , 1989, Advances in space research : the official journal of the Committee on Space Research.

[297]  M. Forman Solar modulation of galactic cosmic rays. , 1988 .

[298]  Eugene N. Parker,et al.  THE PASSAGE OF ENERGETIC CHARGED PARTICLES THROUGH INTERPLANETARY SPACE , 1965 .

[299]  S. W. Kahlera,et al.  Validating the proton prediction system ( PPS ) , 2022 .