Interfacial nanoarchitectonics for solid-state lithium batteries.

Strong demand for solid-state lithium batteries has prompted intensive research for achieving fast ionic conduction in solids. Although the highest conductivity found among sulfides is higher than that of liquid electrolytes, it improves the battery performance only in combination with electrodes via a low-resistance interface. This Article reviews some interfacial structures that lower the interfacial resistance to enable high-power interfaces by controlling the carrier density.

[1]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[2]  J. Maier,et al.  Comprehensive Modeling of Ion Conduction of Nanosized CaF2/BaF2 Multilayer Heterostructures , 2009 .

[3]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[4]  T. Sasaki,et al.  Self-Organized Core–Shell Structure for High-Power Electrode in Solid-State Lithium Batteries , 2011 .

[5]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[6]  M. Osada,et al.  Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte , 2012 .

[7]  M. Osada,et al.  Interfacial modification for high-power solid-state lithium batteries , 2008 .

[8]  J. Nowotny Surface segregation of defects in oxide ceramic materials , 1988 .

[9]  M. Osada,et al.  Exfoliated oxide nanosheets: new solution to nanoelectronics , 2009 .

[10]  R. Ma,et al.  Colloidal unilamellar layers of tantalum oxide with open channels. , 2007, Inorganic chemistry.

[11]  M. Osada,et al.  Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte , 2011 .

[12]  K. Eberl,et al.  Mesoscopic fast ion conduction in nanometre-scale planar heterostructures , 2000, Nature.

[13]  Stefan Funken,et al.  An advanced model framework for solid electrolyte intercalation batteries. , 2011, Physical chemistry chemical physics : PCCP.

[14]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[15]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[16]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[17]  Joachim Maier,et al.  Ionic conduction in space charge regions , 1995 .