Interfacial nanoarchitectonics for solid-state lithium batteries.
暂无分享,去创建一个
[1] Ryoji Kanno,et al. Lithium Ionic Conductor Thio-LISICON: The Li2 S GeS2 P 2 S 5 System , 2001 .
[2] J. Maier,et al. Comprehensive Modeling of Ion Conduction of Nanosized CaF2/BaF2 Multilayer Heterostructures , 2009 .
[3] K. Tadanaga,et al. New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .
[4] T. Sasaki,et al. Self-Organized Core–Shell Structure for High-Power Electrode in Solid-State Lithium Batteries , 2011 .
[5] Minoru Osada,et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .
[6] M. Osada,et al. Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte , 2012 .
[7] M. Osada,et al. Interfacial modification for high-power solid-state lithium batteries , 2008 .
[8] J. Nowotny. Surface segregation of defects in oxide ceramic materials , 1988 .
[9] M. Osada,et al. Exfoliated oxide nanosheets: new solution to nanoelectronics , 2009 .
[10] R. Ma,et al. Colloidal unilamellar layers of tantalum oxide with open channels. , 2007, Inorganic chemistry.
[11] M. Osada,et al. Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte , 2011 .
[12] K. Eberl,et al. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures , 2000, Nature.
[13] Stefan Funken,et al. An advanced model framework for solid electrolyte intercalation batteries. , 2011, Physical chemistry chemical physics : PCCP.
[14] M. Osada,et al. Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .
[15] Yuki Kato,et al. A lithium superionic conductor. , 2011, Nature materials.
[16] Fujio Izumi,et al. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .
[17] Joachim Maier,et al. Ionic conduction in space charge regions , 1995 .