Mechanical properties of sputtered Cu/V and Al/Nb multilayer films

Abstract We have investigated the microstructure and mechanical properties of sputter-deposited Cu/V and Al/Nb metallic multilayer systems in this study and compared their mechanical properties to Cu/Cr and Cu/Nb reported earlier. These multilayer films are all of fcc/bcc type, with Kurdjumov–Sachs orientation relationship: {1 1 1}fcc//{1 1 0}bcc; 〈1 1 0〉fcc//〈1 1 1〉bcc. In all cases, hardnesses of multilayers increase with decreasing layer thickness, and reach maxima at approximately 2–5 nm layer thickness. The differences in their mechanical properties (the Hall–Petch slope and peak hardness) are interpreted in terms of their differences in shear moduli, heat of mixing, and characteristics of interfaces.

[1]  J. E. Hilliard,et al.  Determination of the primary elastic constants from thin foils having a strong texture , 1982 .

[2]  L. Hultman,et al.  Growth, structure, and microhardness of epitaxial TiN/NbN superlattices , 1992 .

[3]  H. W. Liu,et al.  The equivalence between dislocation pile-ups and cracks , 1990 .

[4]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[5]  S. Lehoczky,et al.  Strength enhancement in thin‐layered Al‐Cu laminates , 1978 .

[6]  P. Anderson,et al.  Fracture in multilayers , 1992 .

[7]  S. I. Rao,et al.  Atomistic simulations of dislocation–interface interactions in the Cu-Ni multilayer system , 2000 .

[8]  M. Nastasi,et al.  The influence of microstructural scale on the combination of strength and electrical resistivity in copper based composites , 1995 .

[9]  K. Adachi,et al.  Strengthening Mechanism of Cold-Drawn Wire of in situ Cu-Cr Composite , 1997 .

[10]  J. Embury,et al.  On dislocation storage and the mechanical response of fine scale microstructures , 1994 .

[11]  D. Srolovitz,et al.  Design of multiscalar metallic multilayer composites for high strength, high toughness, and low CTE mismatch , 1995 .

[12]  Amit Misra,et al.  Deformation mechanism maps for polycrystalline metallic multiplayers , 1999 .

[13]  Gaines C. T. Liu,et al.  Circular dislocation pile-ups , 1967 .

[14]  W. Nix Elastic and plastic properties of thin films on substrates : nanoindentation techniques , 1997 .

[15]  J. Hirth,et al.  On the role of weak interfaces in blocking slip in nanoscale layered composites , 2006 .

[16]  C. Henager,et al.  Slip resistance of interfaces and the strength of metallic multilayer composites , 2004 .

[17]  T. Foecke,et al.  Deformation and fracture in microlaminates , 1996 .

[18]  W. A. Spitzig,et al.  Characterization of the strength and microstructure of heavily cold worked CuNb composites , 1987 .

[19]  Y. Chou,et al.  The limiting grain size dependence of the strength of a polycrystalline aggregate , 1966 .

[20]  V. A. Solov'ev,et al.  The peculiarities of initial stages of deformation in nanocrystalline materials (NCMs) , 1990 .

[21]  S. Barnett,et al.  Structure and Strength of Multilayers , 1999 .

[22]  A. Misra,et al.  Deformation Behavior of Nanostructured Metallic Multilayers , 2001 .

[23]  J. Koehler Attempt to Design a Strong Solid , 1970 .

[24]  P. Anderson,et al.  Hall-Petch relations for multilayered materials , 1995 .

[25]  Amit Misra,et al.  Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers , 2002 .

[26]  Robert W. Cahn,et al.  Plastic deformation and fracture of materials , 1993 .

[27]  F. Zeng,et al.  Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers , 2007 .

[28]  B. Carnahan,et al.  Image forces on screw dislocations in multilayer structures , 1987 .