19th century real analysis, forward and backward
暂无分享,去创建一个
[1] R. Hartshorne. Geometry: Euclid and Beyond , 2005 .
[2] R. Goldblatt. Lectures on the hyperreals : an introduction to nonstandard analysis , 1998 .
[3] J. Baldwin. Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert , 2018 .
[4] Robin E. Rider. From the Calculus to Set Theory, 1630–1910: An Introductory History. Edited by I. Grattan-Guinness , 1985 .
[5] Bruno Belhoste,et al. Augustin-Louis Cauchy : a biography , 1994 .
[6] Lígia Arantes Sad,et al. Cauchy and the problem of point-wise convergence , 2001 .
[7] W. Luxemburg. Non-Standard Analysis , 1977 .
[8] Vladimir Kanovei,et al. Controversies in the Foundations of Analysis: Comments on Schubring’s Conflicts , 2016, 1601.00059.
[9] C. Gilain. Cauchy et le cours d'analyse de l'Ecole polytechnique , 1989 .
[10] I. Grattan-Guinness. Bolzano, Cauchy and the “new analysis” of the early nineteenth century , 1970 .
[11] Piotr Blaszczyk,et al. Is mathematical history written by the victors , 2013, 1306.5973.
[12] Detlef Laugwitz. ON THE HISTORICAL DEVELOPMENT OF INFINITESIMAL MATHEMATICS , 1997 .
[13] Karel Hrbacek,et al. Approaches to analysis with infinitesimals following Robinson, Nelson, and others , 2017, 1703.00425.
[14] Galina Iwanowna Sinkiewicz. On History of Epsilontics , 2016 .
[15] Vladimir Kanovei,et al. Interpreting the Infinitesimal Mathematics of Leibniz and Euler , 2016, 1605.00455.
[16] A. Tarski,et al. Une contribution à la théorie de la mesure , 1930 .
[17] Mikhail G. Katz,et al. Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.
[18] Mariano Hormigón Blánquez. Cours d'analyse de l'école royale polytechnique , 2004 .
[19] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[20] Judith V. Grabiner,et al. The origins of Cauchy's rigorous calculus , 1981 .
[21] Piotr Blaszczyk,et al. Cauchy, infinitesimals and ghosts of departed quantifiers , 2017, 1712.00226.
[22] D. Laugwitz. Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .
[23] Emanuele Bottazzi,et al. Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.
[24] I. Grattan-Guinness. The Emergence of Mathematical Analysis and its Foundational Progress, 1780–1880 , 2020 .
[25] P. Dugac. Eléments d'analyse de Karl Weierstrass , 1973 .
[26] Detlef Laugwitz. Infinitely small quantities in Cauchy's textbooks , 1987 .
[27] R. E. Bradley,et al. Cauchy’s Cours d’analyse: An Annotated Translation , 2009 .
[28] Ivor Grattan-Guinness,et al. From the calculus to set theory, 1630-1910 : an introductory history , 1985 .
[29] Mariam Thalos,et al. Why is there Philosophy of Mathematics at all , 2016 .
[30] Vladimir Kanovei,et al. Toward a History of Mathematics Focused on Procedures , 2016, 1609.04531.
[31] Paolo Mancosu,et al. MEASURING THE SIZE OF INFINITE COLLECTIONS OF NATURAL NUMBERS: WAS CANTOR’S THEORY OF INFINITE NUMBER INEVITABLE? , 2009, The Review of Symbolic Logic.
[32] Sinkevich Galina,et al. On the history of epsilontics , 2015, 1502.06942.
[33] Gert Schubring,et al. Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .
[34] Thierry Guitard. La querelle des infiniment petits a l'Ecole Polytechnique au XIX^e siecle , 1986 .
[35] Vladimir Kanovei,et al. Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms , 2017, 1704.07723.
[36] Michiyo Nakane,et al. Did Weierstrass’s differential calculus have a limit-avoiding character? His definition of a limit in ϵ – δ style , 2014 .
[37] Carl B. Boyer. The concepts of the calculus : a critical and historical discussion of the derivative and the integral , 1939 .
[38] Jonathan M. Borwein,et al. Measurement of a Circle , 2000 .
[39] Vladimir Kanovei,et al. Small oscillations of the pendulum, Euler’s method, and adequality , 2016, 1604.06663.
[40] A. Cauchy,et al. Exercices d'analyse et de physique mathématique , 1840 .
[41] Ivor Grattan-Guinness. Convolutions in French Mathematics, 1800–1840: From the Calculus and Mechanics to Mathematical Analysis and Mathematical Physics , 1990 .
[42] H. Keisler. Elementary Calculus: An Infinitesimal Approach , 1976 .