PINK1/Parkin mediated mitophagy ameliorates palmitic acid-induced apoptosis through reducing mitochondrial ROS production in podocytes.

[1]  Lijun Xu,et al.  Berberine Protects Glomerular Podocytes via Inhibiting Drp1-Mediated Mitochondrial Fission and Dysfunction , 2019, Theranostics.

[2]  Z. Dong,et al.  PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury , 2018, Cell Death & Disease.

[3]  Yuehua Wu,et al.  Palmitic Acid-Induced Podocyte Apoptosis via the Reactive Oxygen Species-Dependent Mitochondrial Pathway , 2018, Kidney and Blood Pressure Research.

[4]  G. Qin,et al.  FoxO1 Promotes Mitophagy in the Podocytes of Diabetic Male Mice via the PINK1/Parkin Pathway , 2017, Endocrinology.

[5]  Y. Kanwar,et al.  Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease. , 2015, Journal of the American Society of Nephrology : JASN.

[6]  V. D’Agati,et al.  Deficient Autophagy Results in Mitochondrial Dysfunction and FSGS. , 2015, Journal of the American Society of Nephrology : JASN.

[7]  W. Ding,et al.  Mitochondrial dynamics and mitochondrial quality control , 2014, Redox biology.

[8]  D. Koya,et al.  Lipid mediators in diabetic nephropathy , 2014, Fibrogenesis & tissue repair.

[9]  Jianhua Zhang,et al.  Mitophagy mechanisms and role in human diseases. , 2014, The international journal of biochemistry & cell biology.

[10]  Songming Huang,et al.  Mitochondrial dysfunction in the pathophysiology of renal diseases. , 2014, American journal of physiology. Renal physiology.

[11]  T. Horino,et al.  Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. , 2013, American journal of physiology. Renal physiology.

[12]  Lin Sun,et al.  Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology , 2012, Kidney international.

[13]  T. Schwarz,et al.  The pathways of mitophagy for quality control and clearance of mitochondria , 2012, Cell Death and Differentiation.

[14]  P. Kim,et al.  ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy , 2012, Autophagy.

[15]  Hyun Soon Lee Mechanisms and consequences of hypertriglyceridemia and cellular lipid accumulation in chronic kidney disease and metabolic syndrome. , 2011, Histology and histopathology.

[16]  D. Selkoe,et al.  The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking , 2011, Journal of neurochemistry.

[17]  R. Youle,et al.  Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. , 2011, Antioxidants & redox signaling.

[18]  N. Wood,et al.  Mitophagy and Parkinson's disease: The PINK1–parkin link , 2011, Biochimica et biophysica acta.

[19]  A. Whitworth,et al.  PINK1 cleavage at position A103 by the mitochondrial protease PARL , 2010, Human molecular genetics.

[20]  C. Mammucari,et al.  Signaling pathways in mitochondrial dysfunction and aging , 2010, Mechanisms of Ageing and Development.

[21]  N. Hattori,et al.  PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy , 2010, The Journal of cell biology.

[22]  N. Hattori,et al.  PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy , 2010, FEBS letters.

[23]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[24]  Ji Zhang,et al.  Role of BNIP3 and NIX in cell death, autophagy, and mitophagy , 2009, Cell Death and Differentiation.

[25]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[26]  L. Scorrano,et al.  High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. , 2008, Biochimica et biophysica acta.

[27]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[28]  P. Schrauwen,et al.  Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. , 2004, Diabetes.

[29]  S. Emr,et al.  Autophagy as a regulated pathway of cellular degradation. , 2000, Science.

[30]  T. Rabelink,et al.  Early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats. , 2000, Journal of the American Society of Nephrology : JASN.

[31]  T. Meyer,et al.  Podocyte loss and progressive glomerular injury in type II diabetes. , 1997, The Journal of clinical investigation.

[32]  D. Wheeler,et al.  Lipid abnormalities in the nephrotic syndrome: causes, consequences, and treatment. , 1994, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[33]  Z. Varghese,et al.  LIPID NEPHROTOXICITY IN CHRONIC PROGRESSIVE GLOMERULAR AND TUBULO-INTERSTITIAL DISEASE , 1982, The Lancet.