Wolf2Pack - Portal Based Atomistic Force-Field Development

In this contribution we introduce the technical concept and implementation details concerning the front end of our force-field optimization workflow package for intramolecular degrees of freedom, called Wolf2Pack. The package's design follows our belief that parameter optimization should be a user-driven, but program guided, workflow with specific modular tasks that reduce human errors and save time. Through this design, parameter optimization becomes more reliable and reproducible. Wolf2Pack can integrate common force fields from different research areas, allowing the user to optimize balanced parameters; alternatively users can develop highly specialized force fields that suite their chemical systems. Included in the package's front end is a force-field and molecular database whose contents facilitate parameter optimization. Wolf2Pack can be accessed at www.wolf2pack.com.

[1]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..

[2]  Junmei Wang,et al.  Automatic parameterization of force field by systematic search and genetic algorithms , 2001, J. Comput. Chem..

[3]  Carole A. Goble,et al.  Software Design for Empowering Scientists , 2009, IEEE Software.

[4]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..

[5]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[6]  D. Theodorou,et al.  Simulation Methods for Polymers , 2007 .

[7]  Jadwiga Kuta,et al.  ForceFit: A code to fit classical force fields to quantum mechanical potential energy surfaces , 2010, J. Comput. Chem..

[8]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[9]  Maurizio Recanatini,et al.  The role of fragment-based and computational methods in polypharmacology. , 2012, Drug discovery today.

[10]  A. J. Hopfinger,et al.  Molecular mechanics force‐field parameterization procedures , 1984 .

[11]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[12]  Kenneth M Merz,et al.  Molecular recognition and drug-lead identification: what can molecular simulations tell us? , 2010, Current medicinal chemistry.

[13]  Piotr Cieplak,et al.  R.E.DD.B.: A database for RESP and ESP atomic charges, and force field libraries , 2007, Nucleic Acids Res..

[14]  Karl N. Kirschner,et al.  A modern workflow for force-field development - Bridging quantum mechanics and atomistic computational models , 2011, Comput. Phys. Commun..

[15]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .

[16]  Dirk Reith,et al.  Assessment of numerical optimization algorithms for the development of molecular models , 2010, Comput. Phys. Commun..

[17]  Jacob D. Durrant,et al.  Molecular dynamics simulations and drug discovery , 2011, BMC Biology.

[18]  Dirk Reith,et al.  GROW: A gradient-based optimization workflow for the automated development of molecular models , 2010, Comput. Phys. Commun..

[19]  R. Galeazzi Molecular Dynamics as a Tool in Rational Drug Design: Current Status and Some Major Applications , 2009 .

[20]  P. Wormer,et al.  Theory and Applications of Computational Chemistry The First Forty Years , 2005 .

[21]  Piotr Cieplak,et al.  The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. , 2010, Physical chemistry chemical physics : PCCP.

[22]  R. Snurr,et al.  Recent developments in the molecular modeling of diffusion in nanoporous materials , 2007 .

[23]  Abhishek Tiwari,et al.  Workflow based framework for life science informatics , 2007, Comput. Biol. Chem..

[24]  Kurt Kremer,et al.  Multiscale simulation of soft matter systems. , 2010, Faraday discussions.

[25]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[26]  Alexander D. MacKerell,et al.  Automated conformational energy fitting for force-field development , 2008, Journal of molecular modeling.

[27]  Geoffrey C. Fox,et al.  Examining the Challenges of Scientific Workflows , 2007, Computer.

[28]  G. M. Medina,et al.  MOLECULAR AND MULTISCALE MODELING: REVIEW ON THE THEORIES AND APPLICATIONS IN CHEMICAL ENGINEERING , 2009 .