Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries

Vying for newer sodium-ion chemistry for rechargeable batteries, Na2FeP2O7 pyrophosphate has been recently unveiled as a 3 V high-rate cathode. In addition to its low cost and promising electrochemical performance, here we demonstrate Na2FeP2O7 as a safe cathode with high thermal stability. Chemical/electrochemical desodiation of this insertion compound has led to the discovery of a new polymorph of NaFeP2O7. High-temperature analyses of the desodiated state NaFeP2O7 show an irreversible phase transition from triclinic (P1) to the ground state monoclinic (P21/c) polymorph above 560 °C. It demonstrates high thermal stability, with no thermal decomposition and/or oxygen evolution until 600 °C, the upper limit of the present investigation. This high operational stability is rooted in the stable pyrophosphate (P2O7)4– anion, which offers better safety than other phosphate-based cathodes. It establishes Na2FeP2O7 as a safe cathode candidate for large-scale economic sodium-ion battery applications.

[1]  Hiroyuki Yamaguchi,et al.  Na4Co3(PO4)2P2O7: A novel storage material for sodium-ion batteries , 2013 .

[2]  A. Yamada,et al.  Pyrophosphate Chemistry toward Safe Rechargeable Batteries , 2013 .

[3]  Ramazan Kahraman,et al.  Na2FeP2O7 as a Promising Iron‐Based Pyrophosphate Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical Study , 2013 .

[4]  Sai-Cheong Chung,et al.  A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries , 2013 .

[5]  Shinichi Komaba,et al.  A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries , 2013 .

[6]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[7]  J. Choi,et al.  Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. , 2013, Journal of the American Chemical Society.

[8]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[9]  Takayuki Komatsu,et al.  Fabrication of Na2FeP2O7 glass-ceramics for sodium ion battery , 2012 .

[10]  Shin-ichi Nishimura,et al.  High‐Voltage Pyrophosphate Cathodes , 2012 .

[11]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[12]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[13]  Yuki Yamada,et al.  Polymorphs of LiFeSO4F as cathode materials for lithium ion batteries - a first principle computational study. , 2012, Physical chemistry chemical physics : PCCP.

[14]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[15]  J. Tarascon,et al.  Synthesis and crystal chemistry of the NaMSO4F family (M = Mg, Fe, Co, Cu, Zn) , 2012 .

[16]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[17]  C. Delmas,et al.  Electrochemical Na-Deintercalation from NaVO2 , 2011 .

[18]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[19]  A. Yamada,et al.  New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. , 2010, Journal of the American Chemical Society.

[20]  M. Armand,et al.  Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. , 2010, Inorganic chemistry.

[21]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[22]  Eiji Kobayashi,et al.  Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte , 2010 .

[23]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[24]  J. Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[25]  K. Wallwork,et al.  The High Resolution Powder Diffraction Beamline for the Australian Synchrotron , 2007 .

[26]  Richard E. Smalley,et al.  Future Global Energy Prosperity: The Terawatt Challenge , 2005 .

[27]  Jean-Marie Tarascon,et al.  The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 , 2005 .

[28]  Jeremy Barker,et al.  A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4 F , 2003 .

[29]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[30]  B. Elouadi,et al.  Study of the Crystal Structures of Sodium Magnesium and Sodium Nickel Diphosphates , 2000 .

[31]  J. Bridson,et al.  Synthesis and Crystal Structure of Maricite and Sodium Iron(III) Hydroxyphosphate , 1998 .

[32]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[33]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[34]  G. L. Flem,et al.  Etudes cristallographique magnétique et par résonance Mössbauer de la variété de haute température du pyrophosphate NaFeP2O7 , 1984 .

[35]  B. Raveau,et al.  The pyrophosphate NaFeP2O7: A cage structure , 1982 .

[36]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[37]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .