A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites

Abstract Several varieties of vapor-grown carbon nanofiber with diameters under 200 nm and conically shaped graphene planes canted with respect to the longitudinal fiber axis are available. Because of the strong inter-fiber bonding, compounding these fibers with polymeric resins demands some care. Therefore, fabrication of nanofiber composites has led to variable and occasionally disappointing electrical conductivity and tensile strength. In the following paper we review the published data for vapor-grown carbon nanofiber (VGCNF) composites and show that the best results, achieved with satisfactory dispersion, are consistent with each other and with calculation. With careful preparation techniques, composite tensile strength and modulus of more than triple that of the neat resin can be achieved with 15 vol% fibers. Electrical conductivity can be achieved with less than 1/2 vol% fiber loading, while above 15 vol% loading resistivities near 0.1 Ω cm are possible. Excellent compressive strength and thermal conductivity can also be achieved.

[1]  C. Pittman,et al.  Vapor grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices , 1999 .

[2]  Gary G. Tibbetts,et al.  Modeling and characterization of damping in carbon nanofiber/polypropylene composites , 2003 .

[3]  Gary G. Tibbetts,et al.  Role of sulfur in the production of carbon fibers in the vapor phase , 1994 .

[4]  J. P. Donohoe,et al.  Preparation, electrical and mechanical properties of vapor grown carbon fiber (VGCF)/vinyl ester composites , 2004 .

[5]  J. Baek,et al.  Grafting of Vapor-Grown Carbon Nanofibers via in-Situ Polycondensation of 3-Phenoxybenzoic Acid in Poly(phosphoric acid) , 2004 .

[6]  H. Toghiani,et al.  Nitric acid oxidation of vapor grown carbon nanofibers , 2004 .

[7]  J. Ting,et al.  Ultra high thermal conductivity polymer composites , 2002 .

[8]  Linda S. Schadler,et al.  LOAD TRANSFER IN CARBON NANOTUBE EPOXY COMPOSITES , 1998 .

[9]  Charles U. Pittman,et al.  Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites , 2002 .

[10]  Y. Kim,et al.  Comparative study of herringbone and stacked-cup carbon nanofibers , 2005 .

[11]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[12]  G. Tibbetts,et al.  An adsorption-diffusion isotherm and its application to the growth of carbon filaments on iron catalyst particles , 1987 .

[13]  Terry M. Tritt,et al.  Mechanical properties of vapor-grown carbon fiber , 1995 .

[14]  G. Tibbetts Lengths of carbon fibers grown from iron catalyst particles in natural gas , 1985 .

[15]  C. Beetz,et al.  Mechanical properties of vapour-grown carbon fibres , 1987 .

[16]  David P. Anderson,et al.  Strength prediction of partially aligned discontinuous fiber-reinforced composites , 2001 .

[17]  M. Endo,et al.  Structural Improvement of Carbon Fibers Prepared from Benzene , 1976 .

[18]  L. Bonnetain,et al.  Formation de fibres de carbone a partir du methane II: Germination du carbone et fusion des particules catalytiques , 1988 .

[19]  Gary G. Tibbetts,et al.  Electrical conductivity of vapor-grown carbon fiber/thermoplastic composites , 2001 .

[20]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[21]  M. Dresselhaus,et al.  Graphite fibers and filaments , 1988 .

[22]  B. Maruyama,et al.  Carbon nanotubes and nanofibers in composite materials , 2002 .

[23]  C. Bernardo,et al.  Tensile, Electrical and Thermal Properties of Vapor Grown Carbon Fibers Composites , 2001 .

[24]  Tatsuhiro Takahashi,et al.  Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field , 2006 .

[25]  Gary G. Tibbetts,et al.  A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons , 1993 .

[26]  R. Christensen Properties of carbon fibers , 1994 .

[27]  J. Ting,et al.  CHAPTER 5 – Vapor Grown Carbon Fiber Composites , 1999 .

[28]  Bin Zhang,et al.  Gas sensitive vapor grown carbon nanofiber/polystyrene sensors , 2006 .

[29]  C. A. Bernardo,et al.  Transport properties of polymer-vapour grown carbon fibre composites , 2000 .

[30]  M. Dresselhaus,et al.  Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications , 2001 .

[31]  Gary G. Tibbetts,et al.  Surface treatments for improving the mechanical properties of carbon nanofiber/thermoplastic composites , 2003 .

[32]  Gary G. Tibbetts,et al.  Carbon Filaments and Nanotubes : Common Origins, Differing Applications? , 2001 .

[33]  B W Anderson The impact of carbon fibre composites on a military aircraft establishment , 1987 .

[34]  G. Tibbetts,et al.  Mechanical and electrical propertiesof vapor-grown carbon fiber thermoplastic composites , 2002 .

[35]  M. Dresselhaus,et al.  Microstructural changes induced in “stacked cup” carbon nanofibers by heat treatment , 2003 .

[36]  G. Tibbetts,et al.  Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices , 1999 .

[37]  W. S. Johnson,et al.  Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites , 2004 .

[38]  K. J. Hüttinger,et al.  Carbon fibers, filaments, and composites , 1990 .

[39]  Gary G. Tibbetts,et al.  Heat treating carbon nanofibers for optimal composite performance , 2006 .