On the method of reflections

This paper aims at reviewing and analysing the method of reflections. The latter is an iterative procedure designed to linear boundary value problems set in multiply connected domains. Being based on a decomposition of the domain boundary, this method is particularly well-suited to numerical solvers relying on integral representation formulas. For the parallel and sequential forms of the method appearing in the literature, we propose a general abstract formulation in a given Hilbert setting and interpret the procedure in terms of subspace corrections. We then prove the unconditional convergence of the sequential form and propose a modification of the parallel one that makes it unconditionally converging. An alternative proof of convergence is provided in a case which does not fit into the previous framework. We finally present some numerical tests.

[1]  Heinz H. Bauschke,et al.  Characterizing arbitrarily slow convergence in the method of alternating projections , 2007, Int. Trans. Oper. Res..

[2]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[3]  Stuart C. Hawkins,et al.  A high-order algorithm for multiple electromagnetic scattering in three dimensions , 2009, Numerical Algorithms.

[4]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[5]  Felix Otto,et al.  Identification of the Dilute Regime in Particle Sedimentation , 2004 .

[6]  A. Auslender Optimisation : méthodes numériques , 1976 .

[7]  Julien Salomon,et al.  Methods of Reflections: relations with Schwarz methods and classical stationary iterations, scalability and preconditioning. , 2019 .

[8]  S. D. Traytak Convergence of a reflection method for diffusion-controlled reactions on static sinks , 2006 .

[9]  Jan K. G. Dhont,et al.  An introduction to dynamics of colloids , 1996 .

[10]  J. Velázquez,et al.  The Method of Reflections, Homogenization and Screening for Poisson and Stokes Equations in Perforated Domains , 2016, 1603.06750.

[11]  Martin J. Gander,et al.  Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-Sized Subdomains: Part I , 2017, SIAM J. Numer. Anal..

[12]  Sangtae Kim,et al.  Microhydrodynamics: Principles and Selected Applications , 1991 .

[13]  E J Hruslov,et al.  THE METHOD OF ORTHOGONAL PROJECTIONS AND THE DIRICHLET PROBLEM IN DOMAINS WITH A FINE-GRAINED BOUNDARY , 1972 .

[14]  F. Deutsch Rate of Convergence of the Method of Alternating Projections , 1984 .

[15]  M. Lax Multiple Scattering of Waves , 1951 .

[16]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[17]  Gerard T. Schuster A hybrid BIE+Born series modeling scheme: Generalized Born series , 1985 .

[18]  C. Badea,et al.  The rate of convergence in the method of alternating projections , 2010, 1006.2047.

[19]  Ll. Ta-tsien,et al.  A class of non-local boundary value problems for partial differential equations and its applications in numerical analysis , 1989 .

[20]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[21]  J. Dixmier Étude sur les variétés et les opérateurs de Julia, avec quelques applications , 1949 .

[22]  Richard M. Höfer Sedimentation of Inertialess Particles in Stokes Flows , 2016 .

[23]  R. Showalter Hilbert Space Methods for Partial Differential Equations , 1979, Electronic Journal of Differential Equations.

[24]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[25]  Hein Hundal,et al.  The Rate of Convergence for the Method of Alternating Projections, II , 1997 .

[26]  G. J. Kynch The slow motion of two or more spheres through a viscous fluid , 1959, Journal of Fluid Mechanics.

[27]  P. Porcelli,et al.  On rings of operators , 1967 .

[28]  K. Friedrichs On certain inequalities and characteristic value problems for analytic functions and for functions of two variables , 1937 .

[29]  Patrick L. Combettes,et al.  On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints , 2009, Computational Optimization and Applications.

[30]  Hermann Weyl,et al.  The method of orthogonal projection in potential theory , 1940 .

[31]  Martin J. Gander,et al.  Schwarz Methods over the Course of Time , 2008 .

[32]  Jinchao Xu,et al.  The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .

[33]  Howard L. Weinert,et al.  Error bounds for the method of alternating projections , 1988, Math. Control. Signals Syst..

[34]  Frank Deutsch,et al.  Slow convergence of sequences of linear operators II: Arbitrarily slow convergence , 2010, J. Approx. Theory.

[35]  B. M. Fulk MATH , 1992 .

[36]  John F. Brady,et al.  Many-body effects and matrix inversion in low-Reynolds-number hydrodynamics , 2001 .

[37]  Frédéric Boyer,et al.  Model for a Sensor Inspired by Electric Fish , 2012, IEEE Transactions on Robotics.

[38]  Frank Deutsch,et al.  The Method of Alternating Orthogonal Projections , 1992 .

[39]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[40]  E. Lauga,et al.  Energetics of synchronized states in three-dimensional beating flagella. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Richard Hofer Sedimentation of Inertialess Particles in Stokes Flows , 2016, 1610.03748.

[42]  P. Waterman,et al.  MULTIPLE SCATTERING OF WAVES , 1961 .

[43]  Alan F. Blackwell,et al.  Programming , 1973, CSC '73.

[44]  Jinchao Xu The method of subspace corrections , 2001 .

[45]  Andrew G. Glen,et al.  APPL , 2001 .

[46]  Hydrodynamic interaction of two permeable spheres I: The method of reflections , 1978 .

[47]  Simeon Reich,et al.  The optimal error bound for the method of simultaneous projections , 2017, J. Approx. Theory.

[48]  Sankatha Prasad Singh,et al.  Approximation Theory, Spline Functions and Applications , 1992 .

[49]  C. Jordan Essai sur la géométrie à $n$ dimensions , 1875 .

[50]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[51]  Barbara Niethammer,et al.  A Local Version of Einstein's Formula for the Effective Viscosity of Suspensions , 2019, SIAM J. Math. Anal..

[52]  Y. Rozanov,et al.  THE METHOD OF ORTHOGONAL PROJECTIONS AND THE DIRICHLET PROBLEM IN DOMAINS WITH A FINE-GRAINED BOUNDARY , 2017 .

[53]  Kennan T. Smith,et al.  Practical and mathematical aspects of the problem of reconstructing objects from radiographs , 1977 .

[54]  Heinz H. Bauschke,et al.  Accelerating the convergence of the method of alternating projections , 2003 .

[55]  Guy Pierra,et al.  Decomposition through formalization in a product space , 1984, Math. Program..

[56]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[57]  Vivette Girault,et al.  DIRICHLET AND NEUMANN EXTERIOR PROBLEMS FOR THE n-DIMENSIONAL LAPLACE OPERATOR AN APPROACH IN WEIGHTED SOBOLEV SPACES , 1997 .

[58]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[59]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology : Volume 4 Integral Equations and Numerical Methods , 2000 .

[60]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[61]  Christophe Hazard,et al.  Multiple scattering of acoustic waves by small sound-soft obstacles in two dimensions: Mathematical justification of the Foldy–Lax model , 2013 .

[62]  JAN MANDELyAbstract ON THE SPECTRA OF SUMS OF ORTHOGONAL PROJECTIONS WITH APPLICATIONS TO PARALLEL COMPUTING , 1991 .

[63]  P. Davidovits Fluids , 2019, Physics in Biology and Medicine.

[64]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[65]  Marian Smoluchowski Über die Wechselwirkung von Kugeln, die sich in einer zähen Flüssigkeit bewegen , 1927 .

[66]  Mikhael Balabane,et al.  Boundary Decomposition for Helmholtz and Maxwell equations 1: disjoint sub‐scatterers , 2004 .

[67]  M. Lax MULTIPLE SCATTERING OF WAVES. II. THE EFFECTIVE FIELD IN DENSE SYSTEMS , 1952 .

[68]  L. Foldy,et al.  The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers , 1945 .

[69]  Helen J. Wilson,et al.  Stokes flow past three spheres , 2013, J. Comput. Phys..

[70]  J. Neumann On Rings of Operators. Reduction Theory , 1949 .

[71]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[72]  M. Swift,et al.  MOD , 2020, Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems.

[73]  Haibing Wang,et al.  ON DECOMPOSITION METHOD FOR ACOUSTIC WAVE SCATTERING BY MULTIPLE OBSTACLES , 2013 .

[74]  J. C. Luke,et al.  Convergence of a multiple reflection method for calculation stokes flow in a suspension , 1989 .