Demonstration of radio-frequency response of amorphous IGZO thin film transistors on the glass substrate

Abstract The relatively high-mobility metal-oxide thin-film transistors (TFTs) have the potential to realize radio-frequency (RF) circuits operating in the megahertz regime. Here, we investigate the RF performance of amorphous indium gallium zinc oxide (a-IGZO) TFTs on the glass substrate with the sputtered channel layer. The device exhibits a high current density of 22.6 mA/mm by employing thin bi-layer Al2O3/SiO2 gate dielectrics. The 1.5 μm gate length device achieves a current gain cutoff frequency fT of 384 MHz and a maximum frequency of oscillation fmax of 1.06 GHz. The record high RF response among the amorphous oxide channels makes it possible to explore new large-area electronics applications, such as low-cost radio frequency identification (RFID) tags. Furthermore, the corresponding small signal parameters were extracted and the voltage dependences of RF response were studied.

[1]  I. Yun,et al.  Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors , 2011 .

[2]  Jin Jang,et al.  Self-Aligned Coplanar a-IGZO TFTs and Application to High-Speed Circuits , 2011, IEEE Electron Device Letters.

[3]  JianJang Huang,et al.  Role of ${\hbox{HfO}} _{2} $/${\hbox{SiO}}_{2}$ Gate Dielectric on the Reduction of Low-Frequent Noise and the Enhancement of a-IGZO TFT Electrical Performance , 2012, Journal of Display Technology.

[4]  Yueh-Hua Yu,et al.  On the development of RFID tags in TFT technology , 2009, 2009 Asia Pacific Microwave Conference.

[5]  JianJang Huang,et al.  Indium–gallium–zinc oxide thin film transistors with a hybrid-channel structure for defect suppression and mobility improvement , 2013 .

[6]  Kuk-Hwan Kim,et al.  Radio-Frequency Operation of Transparent Nanowire Thin-Film Transistors , 2009, IEEE Electron Device Letters.

[7]  J. M. Shannon,et al.  Source-gated thin-film transistors , 2003 .

[8]  T. Kamiya,et al.  Present status of amorphous In–Ga–Zn–O thin-film transistors , 2010, Science and technology of advanced materials.

[9]  F. Balon,et al.  High-Performance Thin-Film Transistors in Disordered and Poor-Quality Semiconductors , 2007, IEEE Transactions on Electron Devices.

[10]  K. Brennan,et al.  High field electron transport properties of bulk ZnO , 1999 .

[11]  Jin Jang,et al.  High-Speed and Low-Voltage-Driven Shift Register With Self-Aligned Coplanar a-IGZO TFTs , 2012, IEEE Electron Device Letters.

[12]  JianJang Huang,et al.  Characterizations of Amorphous IGZO Thin-Film Transistors With Low Subthreshold Swing , 2011, IEEE Electron Device Letters.

[13]  Hiroyuki Uchiyama,et al.  Wireless operations for 13.56-MHz band RFID tag using amorphous oxide TFTs , 2011, IEICE Electron. Express.

[14]  Hyung Nyuck Cho,et al.  Highly Reliable Depletion-Mode a-IGZO TFT Gate Driver Circuits for High-Frequency Display Applications Under Light Illumination , 2012, IEEE Electron Device Letters.

[15]  Jenshan Lin,et al.  RF Characteristics of Room-Temperature-Deposited, Small Gate Dimension Indium Zinc Oxide TFTs , 2008 .

[16]  S. Sasa,et al.  Microwave performance of ZnO/ZnMgO heterostructure field effect transistors , 2011 .

[17]  ZnO based thin-film transistor with high-κ gadolinium and praseodymium oxide as gate dielectric , 2009, 2009 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC).

[18]  Kee-Won Kwon,et al.  Source/Drain Series-Resistance Effects in Amorphous Gallium–Indium Zinc-Oxide Thin Film Transistors , 2008, IEEE Electron Device Letters.

[19]  N. Camilleri,et al.  Extracting small-signal model parameters of silicon MOSFET transistors , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[20]  B. Bayraktaroglu,et al.  Microwave ZnO Thin-Film Transistors , 2008, IEEE Electron Device Letters.

[21]  Luisa Petti,et al.  Flexible Self-Aligned Amorphous InGaZnO Thin-Film Transistors With Submicrometer Channel Length and a Transit Frequency of 135 MHz , 2013, IEEE Transactions on Electron Devices.

[22]  T. Makimoto,et al.  Diamond FET using high-quality polycrystalline diamond with f/sub T/ of 45 GHz and f/sub max/ of 120 GHz , 2006, IEEE Electron Device Letters.

[23]  B. Bayraktaroglu,et al.  High-Frequency ZnO Thin-Film Transistors on Si Substrates , 2009, IEEE Electron Device Letters.