Preparation of molecularly imprinted polymer nanobeads for selective sensing of carboxylic acid vapors.

[1]  Bin Chen,et al.  LSPR sensor array based on molecularly imprinted sol-gels for pattern recognition of volatile organic acids , 2017 .

[2]  Kenshi Hayashi,et al.  Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes , 2017, Sensors.

[3]  Nicholas C. Speller,et al.  Assessment of QCM array schemes for mixture identification: citrus scented odors , 2016 .

[4]  K. Hayashi,et al.  A quick responding quartz crystal microbalance sensor array based on molecular imprinted polyacrylic acids coating for selective identification of aldehydes in body odor. , 2015, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[5]  G. Teschl,et al.  Potential of volatile organic compounds as markers of entrapped humans for use in urban search-and-rescue operations , 2015, 1502.06485.

[6]  K. Hayashi,et al.  Molecular imprinted polyacrylic acids based QCM sensor array for recognition of organic acids in body odor , 2014 .

[7]  Kenshi Hayashi,et al.  Development of a fluorescent imaging sensor for the detection of human body sweat odor , 2013 .

[8]  Yafei Zhang,et al.  Multilayer Integrated Film Bulk Acoustic Resonators , 2012 .

[9]  G. Mustafa,et al.  Nanostructured materials with biomimetic recognition abilities for chemical sensing , 2012, Nanoscale Research Letters.

[10]  J. Lundström,et al.  The Smell of Age: Perception and Discrimination of Body Odors of Different Ages , 2012, PloS one.

[11]  J. Greenman,et al.  Microbial volatile compounds in health and disease conditions , 2012, Journal of breath research.

[12]  Giuseppe Vasapollo,et al.  Molecularly Imprinted Polymers: Present and Future Prospective , 2011, International journal of molecular sciences.

[13]  K. Horie,et al.  Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011) , 2011 .

[14]  K. Touhara,et al.  The scent of disease: volatile organic compounds of the human body related to disease and disorder. , 2011, Journal of biochemistry.

[15]  M. Kanlayavattanakul,et al.  Body malodours and their topical treatment agents , 2011, International journal of cosmetic science.

[16]  Ki-Hyun Kim,et al.  Human body-odor components and their determination , 2011 .

[17]  Antonio Jiménez,et al.  Application of a Quartz Crystal Microbalance (QCM) System Coated with Chromatographic Adsorbents for the Detection of Olive Oil Volatile Compounds , 2011, J. Sens. Technol..

[18]  K. Jaruwongrungsee,et al.  A review of monolithic multichannel quartz crystal microbalance: a review. , 2011, Analytica chimica acta.

[19]  Sergey A Piletsky,et al.  Advances in the manufacture of MIP nanoparticles. , 2010, Trends in biotechnology.

[20]  Norman Ratcliffe,et al.  Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. , 2009, Journal of gastrointestinal and liver diseases : JGLD.

[21]  Xiangqun Zeng,et al.  Multichannel monolithic quartz crystal microbalance gas sensor array. , 2009, Analytical chemistry.

[22]  Gerrit Borchard,et al.  Gender-specific differences between the concentrations of nonvolatile (R)/(S)-3-methyl-3-sulfanylhexan-1-Ol and (R)/(S)-3-hydroxy-3-methyl-hexanoic acid odor precursors in axillary secretions. , 2008, Chemical senses.

[23]  C. Wysocki,et al.  Analyses of volatile organic compounds from human skin , 2008, The British journal of dermatology.

[24]  D. Penn,et al.  Individual and gender fingerprints in human body odour , 2007, Journal of The Royal Society Interface.

[25]  J. Havlíček,et al.  The effect of meat consumption on body odor attractiveness. , 2006, Chemical senses.

[26]  Allison M. Curran,et al.  Comparison of the Volatile Organic Compounds Present in Human Odor Using Spme-GC/MS , 2005, Journal of Chemical Ecology.

[27]  Nathan S. Lewis,et al.  Detection and Classification of Volatile Organic Amines and Carboxylic Acids Using Arrays of Carbon Black-Dendrimer Composite Vapor Detectors , 2005 .

[28]  W. Miekisch,et al.  Diagnostic potential of breath analysis--focus on volatile organic compounds. , 2004, Clinica chimica acta; international journal of clinical chemistry.

[29]  Nathan S. Lewis,et al.  Mechanism of enhanced sensitivity of linear poly(ethylenimine)-carbon black composite detectors to carboxylic acid vapors , 2003 .

[30]  M. Ogura,et al.  Mechanism and Regulation of Body Malodor Generation (1) , 2003 .

[31]  Megumi Sadaie,et al.  Mechanism and Regulation of Body Malodor Generation (2) , 2003 .

[32]  Nathan S Lewis,et al.  Enhanced sensitivity to and classification of volatile carboxylic acids using arrays of linear poly(ethylenimine)-carbon black composite vapor detectors. , 2003, Analytical chemistry.

[33]  S Haze,et al.  2-Nonenal newly found in human body odor tends to increase with aging. , 2001, The Journal of investigative dermatology.

[34]  L. Ye,et al.  Synthesis and Characterization of Molecularly Imprinted Microspheres , 2000 .

[35]  D. Barnard,et al.  Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). , 2000, Analytical chemistry.

[36]  G. Beauchamp,et al.  Volatile signals of the major histocompatibility complex in male mouse urine. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Komaki,et al.  Investigation of the Odor Evolved from Human Hair , 1994 .

[38]  G. Preti,et al.  Non-oral etiologies of oral malodor and altered chemosensation. , 1992, Journal of periodontology.

[39]  M. Fukuda,et al.  Elucidation of chemical compounds responsible for foot malodour , 1990, The British journal of dermatology.

[40]  G S Rao,et al.  Diagnostic potential of breath analysis in oral disease and hygiene. , 1983, Clinical chemistry.

[41]  L. Zieve,et al.  Volatile fatty acids in the breath of patients with cirrhosis of the liver. , 1970, The Journal of laboratory and clinical medicine.

[42]  K. Hayashi,et al.  Preparation of fluorescent molecularly imprinted polymer micropowder for odorant visualization , 2016 .

[43]  K. Hayashi,et al.  Polyacrylic acid polymer and aldehydes template molecule based MIPs coated QCM sensors for detection of pattern aldehydes in body odor , 2015 .

[44]  Songjun Li,et al.  Molecularly imprinted sensors : overview and applications , 2013 .

[45]  J W Dallinga,et al.  Breath analysis as a potential diagnostic tool for tuberculosis. , 2012, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[46]  M. Kusuhara,et al.  Odor Associated with Aging , 2010 .

[47]  J. Jang,et al.  Controlled amine functionalization on conducting polypyrrole nanotubes as effective transducers for volatile acetic acid. , 2007, Biomacromolecules.

[48]  L. Ye,et al.  Molecularly imprinted monodisperse microspheres for competitive radioassay , 1999 .

[49]  U. Bernier,et al.  Analysis of human skin emanations by gas chromatography/mass spectrometry. 1. Thermal desorption of attractants for the yellow fever mosquito (Aedes aegypti) from handled glass beads. , 1999, Analytical chemistry.

[50]  G. Hussler,et al.  Detection and identification of volatile compounds evolved from human hair and scalp using headscape gas chromatography , 1988 .

[51]  G. Beauchamp,et al.  The genetics of body scent , 1987 .

[52]  A. Manolis,et al.  The diagnostic potential of breath analysis. , 1983, Clinical chemistry.