Performance Analysis of Multi-Class Queueing Models

[1]  Dave Worthington,et al.  Use of queue modelling in the analysis of elective patient treatment governed by a maximum waiting time policy , 2015, Eur. J. Oper. Res..

[2]  Erik M. M. Winands,et al.  Iterative approximation of k-limited polling systems , 2007, Queueing Syst. Theory Appl..

[3]  Richard J. Boucherie,et al.  An analytical packet/flow-level modelling approach for wireless LANs with Quality-of-Service support , 2005 .

[4]  Onno J. Boxma,et al.  The busy period in the fluid queue , 1998, SIGMETRICS '98/PERFORMANCE '98.

[5]  J. Blanchet,et al.  On the transition from heavy traffic to heavy tails for the M/G/1 queue: The regularly varying case. , 2010, 1009.5426.

[6]  Robert D. van der Mei,et al.  Polling systems with periodic server routing in heavy traffic: renewal arrivals , 2005, Oper. Res. Lett..

[7]  Avishai Mandelbaum,et al.  Staffing Many-Server Queues with Impatient Customers: Constraint Satisfaction in Call Centers , 2009, Oper. Res..

[8]  Adam Wierman,et al.  Scheduling in polling systems , 2007, Perform. Evaluation.

[9]  Alain Jean-Marie,et al.  On the transient behavior of the processor sharing queue , 1994, Queueing Syst. Theory Appl..

[10]  Hossein Abouee-Mehrizi,et al.  State-dependent M/G/1 queueing systems , 2016, Queueing Syst. Theory Appl..

[11]  Robert D. van der Mei,et al.  Towards a unifying theory on branching-type polling systems in heavy traffic , 2007, Queueing Syst. Theory Appl..

[12]  Isi Mitrani,et al.  Sharing a Processor Among Many Job Classes , 1980, JACM.

[13]  J. Kingman THE SINGLE SERVER QUEUE , 1970 .

[14]  Kiran M. Rege,et al.  Queue-Length Distribution for the Discriminatory Processor-Sharing Queue , 1996, Oper. Res..

[15]  Sem C. Borst,et al.  Queues with Workload-Dependent Arrival and Service Rates , 2004, Queueing Syst. Theory Appl..

[16]  J. F. C. Kingman,et al.  On queues in which customers are served in random order , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  Linus Schrage,et al.  The Queue M/G/1 with the Shortest Remaining Processing Time Discipline , 1966, Oper. Res..

[18]  R. Hall,et al.  Patient flow : reducing delay in healthcare delivery , 2006 .

[19]  David J. Worthington,et al.  An Example of a Good but Partially Successful OR Engagement: Improving Outpatient Clinic Operations , 1998, Interfaces.

[20]  S. Grishechkin On a relationship between processor-sharing queues and Crump–Mode–Jagers branching processes , 1992, Advances in Applied Probability.

[21]  John Toussaint,et al.  Innovation and Best Practices in Health Care Scheduling , 2015 .

[22]  Attahiru Sule Alfa,et al.  Analysis of a time-limited polling system , 1998, Comput. Commun..

[23]  Nikhil Bansal,et al.  Handling load with less stress , 2006, Queueing Syst. Theory Appl..

[24]  T. Hasegawa,et al.  WAITING TIME ANALYSIS FOR MX/G/1 PRIORITY QUEUES WITH/WITHOUT VACATIONS UNDER RANDOM ORDER OF SERVICE DISCIPLINE , 2000 .

[25]  Peter J. H. Hulshof,et al.  Taxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MS , 2012 .

[26]  R. D. van der Mei,et al.  Polling systems in heavy traffic: Higher moments of the delay , 1999, Queueing Syst. Theory Appl..

[27]  Alain Jean-Marie,et al.  The fluid limit of the multiclass processor sharing queue , 2012, Queueing Syst. Theory Appl..

[28]  Sem C. Borst,et al.  Sojourn time asymptotics in processor-sharing queues , 2006, Queueing Syst. Theory Appl..

[29]  高木 英明,et al.  Analysis of polling systems , 1986 .

[30]  Samuel Kotz,et al.  Generalized trapezoidal distributions , 2003 .

[31]  R. D. van der Mei,et al.  Delay in polling systems with large switch-over times , 1999 .

[32]  Onno Boxma,et al.  On a class of one-dimensional random walks , 1995 .

[33]  Hong Linh Truong,et al.  Mean-delay approximation for cyclic-service queueing systems , 1983 .

[34]  Chia-Huang Wu,et al.  Recent Developments in Vacation Queueing Models : A Short Survey , 2010 .

[35]  D. Berwick,et al.  Advanced access: reducing waiting and delays in primary care. , 2003, JAMA.

[36]  Offer Kella,et al.  Priorities in M/G/1 queue with server vacations , 1988 .

[37]  Mor Harchol-Balter,et al.  Server farms with setup costs , 2010, Perform. Evaluation.

[38]  O. J. Boxma,et al.  Lévy processes with adaptable exponent , 2009, Advances in Applied Probability.

[39]  M. Murray,et al.  Improving access to specialty care. , 2007, Joint Commission journal on quality and patient safety.

[40]  Ger Koole,et al.  Queues with waiting time dependent service , 2011, Queueing Syst. Theory Appl..

[41]  R. D. van der Mei,et al.  Performance of Web servers in a distributed computing environment , 2001 .

[42]  Mandyam M. Srinivasan,et al.  Descendant set: an efficient approach for the analysis of polling systems , 1994, IEEE Trans. Commun..

[43]  R. Bekker,et al.  Care on demand in nursing homes: a queueing theoretic approach , 2016, Health care management science.

[44]  Avishai Mandelbaum,et al.  Call Centers with Impatient Customers: Many-Server Asymptotics of the M/M/n + G Queue , 2005, Queueing Syst. Theory Appl..

[45]  R. D. van der Mei,et al.  Polling Systems with Periodic Server Routeing in Heavy Traffic: Distribution of the Delay , 2003 .

[46]  John Frank Charles Kingman,et al.  The single server queue in heavy traffic , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.

[47]  Edward G. Coffman,et al.  Waiting Time Distributions for Processor-Sharing Systems , 1970, JACM.

[48]  Liang Guo,et al.  Scheduling flows with unknown sizes: approximate analysis , 2002, SIGMETRICS '02.

[49]  Mark H. A. Davis Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .

[50]  Leonard Kleinrock,et al.  Time-shared Systems: a theoretical treatment , 1967, JACM.

[51]  Donald F. Towsley,et al.  Fixed point approximations for TCP behavior in an AQM network , 2001, SIGMETRICS '01.

[52]  Frank E. Grubbs,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[53]  P. Vis,et al.  Heavy-traffic limits for polling models with exhaustive service and non-FCFS service order policies , 2014, Advances in Applied Probability.

[54]  Onno Boxma,et al.  On a generic class of lÉvy-driven vacation models , 2007 .

[55]  M. J. M. Posner,et al.  A Two Server Queue with Nonwaiting Customers Receiving Specialized Service , 1981 .

[56]  Onno Boxma,et al.  On a queueing model with service interruptions , 2006 .

[57]  Houyuan Jiang,et al.  Performance-Based Contracts for Outpatient Medical Services , 2012, Manuf. Serv. Oper. Manag..

[58]  J. L. Dorsman,et al.  A New Method for Deriving Waiting-Time Approximations in Polling Systems with Renewal Arrivals , 2011 .

[59]  V. Ramaswami A stable recursion for the steady state vector in markov chains of m/g/1 type , 1988 .

[60]  Uri Yechiali Analysis and Control of Poling Systems , 1993, Performance/SIGMETRICS Tutorials.

[61]  C. Mack,et al.  THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATIVE WHEN WALKING TIME AND REPAIR TIMES ARE CONSTANTS , 1957 .

[62]  Ivo J. B. F. Adan,et al.  Mean value analysis for polling systems , 2006, Queueing Syst. Theory Appl..

[63]  Ivo J. B. F. Adan,et al.  Closed-form waiting time approximations for polling systems , 2011, Perform. Evaluation.

[64]  Richard J. Boucherie,et al.  Designing cyclic appointment schedules for outpatient clinics with scheduled and unscheduled patient arrivals , 2011, Perform. Evaluation.

[65]  Robert D. van der Mei,et al.  Web Server Performance Modeling , 2001, Telecommun. Syst..

[66]  Charu Bhargava,et al.  Unreliable multiserver queueing system with modified vacation policy , 2014 .

[67]  Itay Gurvich,et al.  Service-Level Differentiation in Call Centers with Fully Flexible Servers , 2008, Manag. Sci..

[68]  Oualid Jouini,et al.  Adaptive threshold policies for multi-channel call centers , 2015 .

[69]  S. Elkhuizen,et al.  Using computer simulation to reduce access time for outpatient departments , 2007, BMJ Quality & Safety.

[70]  N. Bingham,et al.  Asymptotic properties of supercritical branching processes I: The Galton-Watson process , 1974, Advances in Applied Probability.

[71]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[72]  Francis de Véricourt,et al.  Nurse Staffing in Medical Units: A Queueing Perspective , 2011, Oper. Res..

[73]  R. D. van der Mei Polling Systems with Switch-over Times under Heavy Load: Moments of the Delay , 2000 .

[74]  F. Baccelli,et al.  Elements of Queueing Theory: Palm Martingale Calculus and Stochastic Recurrences , 2010 .

[75]  Zeynep Akşin,et al.  The Modern Call Center: A Multi‐Disciplinary Perspective on Operations Management Research , 2007 .

[76]  Sander M. Bohte,et al.  Adaptive resource allocation for efficient patient scheduling , 2009, Artif. Intell. Medicine.

[77]  Urtzi Ayesta,et al.  Heavy-Traffic Analysis of a Multiple-Phase Network with Discriminatory Processor Sharing , 2009, Oper. Res..

[78]  S. Lam Queueing Disciplines , 2009 .

[79]  Mark Lawley,et al.  The impact of overbooking on primary care patient no-show , 2013 .

[80]  Robert D. van der Mei,et al.  Applications of polling systems , 2011, ArXiv.

[81]  Alan Scheller-Wolf,et al.  Exact analysis of the M/M/k/setup class of Markov chains via recursive renewal reward , 2013, SIGMETRICS '13.

[82]  Sem C. Borst,et al.  Bandwidth-sharing networks in overload , 2007, Perform. Evaluation.

[83]  Nan Liu,et al.  Panel Size and Overbooking Decisions for Appointment-Based Services under Patient No-Shows , 2014 .

[84]  Robert D. van der Mei,et al.  The impact of scheduling policies on the waiting-time distributions in polling systems , 2014, Queueing Systems.

[85]  Benny Van Houdt Analysis of the adaptive MMAP[K]/PH[K]/1 queue: A multi-type queue with adaptive arrivals and general impatience , 2012, Eur. J. Oper. Res..

[86]  Sem C. Borst,et al.  Waiting-Time Approximations for Multiple-Server Polling Systems , 1998, Perform. Evaluation.

[87]  Eitan Altman,et al.  Expected waiting time in symmetric polling systems with correlated walking times , 2007, Queueing Syst. Theory Appl..

[88]  Navid Izady,et al.  Appointment Capacity Planning in Specialty Clinics: A Queueing Approach , 2015, Oper. Res..

[89]  Alan Cobham,et al.  Priority Assignment in Waiting Line Problems , 1954, Oper. Res..

[90]  H. G. Bernett,et al.  Blended call center performance analysis , 2002 .

[91]  Armann Ingolfsson,et al.  Markov chain models of a telephone call center with call blending , 2007, Comput. Oper. Res..

[92]  Urtzi Ayesta,et al.  PROPERTIES OF THE GITTINS INDEX WITH APPLICATION TO OPTIMAL SCHEDULING , 2011, Probability in the Engineering and Informational Sciences.

[93]  R. D. van der Mei,et al.  Analysis of multiple-server polling systems by means of the power-series algorithm , 1994 .

[94]  M.J.G. vanUitert,et al.  Generalized processor sharing queues , 2003 .

[95]  Moshe Haviv,et al.  Mean sojourn times for phase-type discriminatory processor sharing systems , 2008, Eur. J. Oper. Res..

[96]  Urtzi Ayesta,et al.  Sojourn times in a processor sharing queue with multiple vacations , 2012, Queueing Systems.

[97]  Pu Patrick Wang QUEUEING MODELS WITH DELAYED STATE-DEPENDENT SERVICE TIMES , 1996 .

[98]  Jesus R. Artalejo,et al.  Analysis of a Multiserver Queue with Setup Times , 2005, Queueing Syst. Theory Appl..

[99]  Oualid Jouini,et al.  Performance indicators for call centers with impatient customers , 2013 .

[100]  Q. Deng,et al.  A Two‐Queue Polling Model with Regularly Varying Service and/or Switchover Times , 2003 .

[101]  G. Koole,et al.  Telephone Call Centers : a Tutorial and Literature Review , 2002 .

[102]  Jacques Resing,et al.  Polling systems and multitype branching processes , 1993, Queueing Syst. Theory Appl..

[103]  Constantinos Maglaras,et al.  Decision , Risk and Operations Working Papers Series Contact Centers with a CallBack Option and Real-Time Delay Information , 2004 .

[104]  Yang Woo Shin,et al.  The BMAP/G/1 vacation queue with queue-length dependent vacation schedule , 1998, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[105]  Eitan Altman,et al.  DPS queues with stationary ergodic service times and the performance of TCP in overload , 2004, IEEE INFOCOM 2004.

[106]  Regina Robertovna Egorova,et al.  Sojourn time tails in processor-sharing systems , 2009 .

[107]  Jonathan Patrick,et al.  Models and Methods for Improving Patient Access , 2013 .

[108]  Diwakar Gupta,et al.  Appointment scheduling in health care: Challenges and opportunities , 2008 .

[109]  Athanassios N. Avramidis,et al.  Modelling and simulation of a telephone call center , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[110]  Eitan Altman,et al.  Analysis of customers’ impatience in queues with server vacations , 2006, Queueing Syst. Theory Appl..

[111]  Eitan Altman,et al.  A survey on discriminatory processor sharing , 2006, Queueing Syst. Theory Appl..

[112]  D J Worthington,et al.  Queueing Models for Hospital Waiting Lists , 1987, The Journal of the Operational Research Society.

[113]  Naishuo Tian,et al.  A two threshold vacation policy in multiserver queueing systems , 2006, Eur. J. Oper. Res..

[114]  Ivo J. B. F. Adan,et al.  A polling model with multiple priority levels , 2010, Perform. Evaluation.

[115]  Constantinos Maglaras,et al.  On Customer Contact Centers with a Call-Back Option: Customer Decisions, Routing Rules, and System Design , 2004, Oper. Res..

[116]  Yezekael Hayel,et al.  Pricing for Heterogeneous Services at a Discriminatory Processor Sharing Queue , 2005, NETWORKING.

[117]  H. Tijms A First Course in Stochastic Models , 2003 .

[118]  Peter G. Taylor,et al.  Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes , 1995 .

[119]  R. D. van der Mei Waiting-Time Distributions in Polling Systems with Simultaneous Batch Arrivals , 2002 .

[120]  Avishai Mandelbaum,et al.  Queueing Models of Call Centers: An Introduction , 2002, Ann. Oper. Res..

[121]  Marc Lambrecht,et al.  An advanced queueing model to analyze appointment-driven service systems , 2009, Comput. Oper. Res..

[122]  Sandjai Bhulai,et al.  A queueing model for call blending in call centers , 2003, IEEE Trans. Autom. Control..

[123]  David M. Lucantoni,et al.  New results for the single server queue with a batch Markovian arrival process , 1991 .

[124]  Noah Gans,et al.  A Call-Routing Problem with Service-Level Constraints , 2003, Oper. Res..

[125]  Jens Hofmann The BMAP/G/1 Queue with Level-Dependent Arrivals – An Overview , 2001, Telecommun. Syst..

[126]  Sem C. Borst,et al.  The equivalence between processor sharing and service in random order , 2003, Oper. Res. Lett..

[127]  C. Mack,et al.  The Efficiency of N Machines Uni‐Directionally Patrolled by One Operative When Walking Time is Constant and Repair Times are Variable , 1957 .

[128]  Edward G. Coffman,et al.  Polling Systems in Heavy Traffic: A Bessel Process Limit , 1998, Math. Oper. Res..

[129]  Marc Lambrecht,et al.  Queueing models for appointment-driven systems , 2010, Ann. Oper. Res..

[130]  Naishuo Tian,et al.  An analysis of queueing systems with multi-task servers , 2004, Eur. J. Oper. Res..

[131]  Sem C. Borst,et al.  Asymptotic regimes and approximations for discriminatory processor sharing , 2004, PERV.

[132]  Brian T. Denton,et al.  Handbook of Healthcare Operations Management , 2013 .

[133]  Urtzi Ayesta,et al.  Sojourn Time Approximations for a Discriminatory Processor Sharing Queue , 2016, ACM Trans. Model. Perform. Evaluation Comput. Syst..

[134]  Robert D. van der Mei,et al.  Distribution of the Delay in Polling Systems in Heavy Traffic , 1999, Perform. Evaluation.

[135]  Leonard Kleinrock,et al.  On the M/G/1 Queue with Rest Periods and Certain Service-Independent Queueing Disciplines , 1983, Oper. Res..

[136]  V. M. Vishnevskii,et al.  Mathematical methods to study the polling systems , 2006 .

[137]  Seiya Kudoh,et al.  Symbolic higher-order moments of the waiting time in an M/G/1 queue with random order of service , 1997 .

[138]  Onno Boxma,et al.  A globally gated polling system with server interruptions, and applications to the repairman problem , 1992 .

[139]  Hideaki Takagi,et al.  Queueing analysis: a foundation of performance evaluation , 1993 .

[140]  R. Núñez Queija,et al.  Discriminatory processor sharing revisited , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[141]  Ivo J. B. F. Adan,et al.  A Two-Queue Polling Model with Two Priority Levels in the First Queue , 2010, Discret. Event Dyn. Syst..

[142]  Stephen R. Lawrence,et al.  Clinic Overbooking to Improve Patient Access and Increase Provider Productivity , 2007, Decis. Sci..

[143]  Robert D. van der Mei,et al.  Transient analysis of cycle lengths in cyclic polling systems , 2015, Perform. Evaluation.

[144]  P. H. Brill,et al.  The System Point Method in Exponential Queues: A Level Crossing Approach , 1981, Math. Oper. Res..

[145]  L. Green,et al.  Reducing Delays for Medical Appointments: A Queueing Approach , 2008, Oper. Res..

[146]  The Harold,et al.  A Logarithmic Safety Staffing Rule for Contact Centers with Call Blending , 2014 .

[147]  Zhe George Zhang,et al.  Analysis of multi-server queue with a single vacation (e, d)-policy , 2006, Perform. Evaluation.

[148]  Onno J. Boxma,et al.  Sojourn times in polling systems with various service disciplines , 2009, Perform. Evaluation.

[149]  R. Núñez Queija,et al.  Processor-Sharing Models for Integrated-Services Networks , 2000 .