Quantum Dot Spintronics: Fundamentals and Applications

Spintronics is a generalization of electronics: Electronics means charge carrier transport, spintronics adds to this transport the supplementary degree of freedom spin which has been neglected since the roots of electronics. In this sense, spintronics is opening a new dimension of functional devices which is even more mighty than it may look at a first glance: The electron spin and its orientation is a pure quantum mechanical phenomenon which leads in its complexity to much more information coding depth and combinatorial operations than the storage and transport of charges in classical electronics. That is why the quantum bit (qubit) concept has been introduced by Schumacher [1].

[1]  Jong-Wan Park,et al.  Stoichiometry dependency of the firing and sustain voltage properties of MgO thin films for alternating current plasma display panels , 1999 .

[2]  O.M.J. van 't Erve,et al.  Comparison of Fe/Schottky and Fe/Al2O3 tunnel barrier contacts for electrical spin injection into GaAs , 2004 .

[3]  M. Büttiker,et al.  Magnon-driven quantum-dot heat engine , 2012, 1206.1259.

[4]  Theory of transport through quantum-dot spin valves in the weak-coupling regime , 2004, cond-mat/0404455.

[5]  B. Gerardot,et al.  Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. , 2005, Physical review letters.

[6]  Dirk Reuter,et al.  Room temperature spin relaxation length in spin light-emitting diodes , 2011 .

[7]  Spin inelastic electron tunneling spectroscopy on local spin adsorbed on surface. , 2009, Nano letters.

[8]  B. Sothmann,et al.  Nonequilibrium current and noise in inelastic tunneling through a magnetic atom , 2010, 1003.3794.

[9]  G. Bacher,et al.  Electrical charging of a single quantum dot by a spin polarized electron , 2008 .

[10]  Jens Wiebe,et al.  Revealing Magnetic Interactions from Single-Atom Magnetization Curves , 2008, Science.

[11]  C. Lutz,et al.  Spin excitations of a Kondo-screened atom coupled to a second magnetic atom. , 2009, Physical review letters.

[12]  C. Lutz,et al.  The role of magnetic anisotropy in the Kondo effect , 2008, 0809.4289.

[13]  B. Sothmann,et al.  Influence of spin waves on transport through a quantum-dot spin valve , 2010, 1008.0948.

[14]  Spin injection from perpendicular magnetized ferromagnetic $δ$-MnGa into (Al,Ga)As heterostructures , 2006, cond-mat/0606013.

[15]  Semion Saikin,et al.  Spin dynamics in a compound semiconductor spintronic structure with a Schottky barrier , 2006 .

[16]  Asawin Sinsarp,et al.  Electrical Spin Injection from Out-of-Plane Magnetized FePt/MgO Tunneling Junction into GaAs at Room Temperature , 2006 .

[17]  J. M. Smith,et al.  Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot , 2005 .

[18]  Cyrus F. Hirjibehedin,et al.  Spin Coupling in Engineered Atomic Structures , 2006, Science.

[19]  I. Bizjak,et al.  Measurement of the wrong-sign decays D0 --> K+ pi- pi0 and D0 --> K+ pi- pi+ pi-, and search for CP violation. , 2005, Physical review letters.

[20]  Harald Flügge,et al.  Spin-polarization dynamics in InGaAs quantum dots during pulsed electrical spin-injection , 2009 .

[21]  B. Sothmann,et al.  Transport through quantum-dot spin valves containing magnetic impurities , 2010, 1009.5901.

[22]  Dirk Reuter,et al.  Electron spin injection into GaAs from ferromagnetic contacts in remanence , 2005 .

[23]  J. Fernández-Rossier,et al.  Theory of single-spin inelastic tunneling spectroscopy. , 2009, Physical review letters.

[24]  Aubrey T. Hanbicki,et al.  Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor , 2002 .

[25]  Cyrus F. Hirjibehedin,et al.  Large Magnetic Anisotropy of a Single Atomic Spin Embedded in a Surface Molecular Network , 2007, Science.

[26]  A Charge and Spin Readout Scheme For Single Self-Assembled Quantum Dots , 2008, 0804.0312.

[27]  Dirk Reuter,et al.  Spin injection light-emitting diode with vertically magnetized ferromagnetic metal contacts , 2006 .

[28]  D. Gerthsen,et al.  Electrical spin injection into InGa(N)As quantum structures and single InGaAs quantum dots , 2006 .

[29]  K. Karrai,et al.  Optical emission from a charge-tunable quantum ring , 2000, Nature.

[30]  N. Lorente,et al.  Efficient spin transitions in inelastic electron tunneling spectroscopy. , 2009, Physical review letters.

[31]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[32]  M. Hofmann,et al.  Electrical detection of photoinduced spins both at room temperature and in remanence , 2008 .

[33]  J. Martinek,et al.  Zero-bias anomaly in cotunneling transport through quantum-dot spin valves , 2004, cond-mat/0412434.

[34]  F. Delgado,et al.  Spin-transfer torque on a single magnetic adatom. , 2009, Physical review letters.

[35]  M. Governale,et al.  Probing the exchange field of a quantum-dot spin valve by a superconducting lead , 2010, 1006.1976.

[36]  Dirk Reuter,et al.  Electrical spin injection in InAs quantum dots at room temperature and adjustment of the emission wavelength for spintronic applications , 2011 .

[37]  Dirk Reuter,et al.  Room temperature electrical spin injection in remanence , 2008 .

[38]  T E Browder,et al.  Observation of B+-->K1(1270)+gamma. , 2005, Physical review letters.

[39]  A G Petukhov,et al.  Reduction of spin injection efficiency by interface defect spin scattering in ZnMnSe/AlGaAs-GaAs spin-polarized light-emitting diodes. , 2002, Physical review letters.

[40]  M. Persson Theory of inelastic electron tunneling from a localized spin in the impulsive approximation. , 2008, Physical review letters.

[41]  Dirk Reuter,et al.  Epitaxial growth and interfacial magnetism of spin aligner for remanent spin injection: [Fe/Tb]n/Fe/MgO/GaAs-light emitting diode as a prototype system , 2010 .

[42]  C. Dufour,et al.  Interface and magnetic anisotropy in Tb/Fe multilayers , 1991 .

[43]  Theory of the Franck-Condon blockade regime , 2006, cond-mat/0606512.

[44]  B. Jonker,et al.  Interface magnetization reversal and anisotropy in Fe/AlGaAs(001). , 2005, Physical review letters.

[45]  Curie temperature of F e P t : B 2 O 3 nanocomposite films , 2002 .

[46]  A. Wieck,et al.  Preparation and characterization of epitaxial Fe(001) thin films on GaAs(001)-based LED for spin injection , 2005 .

[47]  A. A. Gorbunov,et al.  Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots , 2002 .

[48]  Cotunneling current through quantum dots with phonon-assisted spin-flip processes , 2005, cond-mat/0509420.

[49]  Spin-controlled optoelectronic devices , 2009 .

[50]  G. Abstreiter,et al.  Optical spectroscopy of charged excitons in single quantum dot photodiodes , 2001 .

[51]  Markus Buttiker,et al.  Optimal energy quanta to current conversion , 2010, 1008.3528.

[52]  G. Bacher,et al.  Ultrafast electrical charging and discharging of a single InGaAs quantum dot , 2010 .

[53]  D. Urban,et al.  Spin-induced charge correlations in transport through interacting quantum dots with ferromagnetic leads , 2009, 0903.1759.

[54]  R M Macfarlane,et al.  Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). , 2005, Physical review letters.

[55]  G. Bacher,et al.  Spin injection into a single self-assembled quantum dot in a p-i-n II-VI/III-V structure , 2007 .

[56]  J. Martinek,et al.  Frequency-dependent current noise through quantum-dot spin valves , 2006, cond-mat/0601366.

[57]  H Kollmus,et al.  Three-body Coulomb problem probed by mapping the Bethe surface in ionizing ion-atom collisions. , 2001, Physical review letters.

[58]  Y. Arakawa,et al.  Size, shape, and strain dependence of the g factor in self-assembled In(Ga)As quantum dots , 2004 .

[59]  C. Lutz,et al.  Controlling the state of quantum spins with electric currents , 2010 .

[60]  Spin injection in the nonlinear regime: band bending effects. , 2002, Physical review letters.