Stabilization for Singular Fractional-Order Systems via Static Output Feedback

The stabilization problem of singular fractional-order systems with fractional commensurate order <inline-formula> <tex-math notation="LaTeX">$0 < \alpha < 2$ </tex-math></inline-formula> via static output feedback is studied in this paper. For the <inline-formula> <tex-math notation="LaTeX">$0 < \alpha < 1$ </tex-math></inline-formula> case, two methods for the static output feedback control design are provided. In the first method, the controller is designed without decomposing the system matrix, and less variables are within the second method. Furthermore, a method that is similar to the second method of the <inline-formula> <tex-math notation="LaTeX">$0 < \alpha < 1$ </tex-math></inline-formula> case is provided for the <inline-formula> <tex-math notation="LaTeX">$1\leq \alpha < 2$ </tex-math></inline-formula> case. The controller parameters are computed by solving matrix inequalities, and efficient iterative algorithms are built to solve the resultant matrix inequalities. Numerical examples are provided to show the effectiveness of the proposed results.

[1]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[2]  Mathieu Moze,et al.  Pseudo state feedback stabilization of commensurate fractional order systems , 2009, 2009 European Control Conference (ECC).

[3]  Marina V. Shitikova,et al.  Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems , 1997 .

[4]  Mohammed Chadli,et al.  New admissibility conditions for singular linear continuous-time fractional-order systems , 2017, J. Frankl. Inst..

[5]  Jian Chen,et al.  Fuzzy normalization and stabilization for a class of nonlinear rectangular descriptor systems , 2017, Neurocomputing.

[6]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[7]  Shuyi Shao,et al.  Stabilization Control of Continuous-Time Fractional Positive Systems Based on Disturbance Observer , 2016, IEEE Access.

[8]  Hamid Reza Karimi,et al.  General Output Feedback Stabilization for Fractional Order Systems: An LMI Approach , 2014 .

[9]  Jiqing Qiu,et al.  Stabilization of fractional-order singular uncertain systems. , 2015, ISA transactions.

[10]  R. Bagley,et al.  The fractional order state equations for the control of viscoelastically damped structures , 1989 .

[11]  Y. Chen,et al.  Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: The 0 , 2017, ISA transactions.

[12]  Indra Narayan Kar Design of static output feedback controller for uncertain systems , 1999, Autom..

[13]  Ian Postlethwaite,et al.  Static output feedback stabilisation with H∞ performance for a class of plants , 2001, Syst. Control. Lett..

[14]  Qing-Guo Wang,et al.  An Improved ILMI Method for Static Output Feedback Control With Application to Multivariable PID Control , 2006, IEEE Transactions on Automatic Control.

[15]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[16]  Yisheng Zhong,et al.  Sufficient and Necessary Condition of Admissibility for Fractional-order Singular System , 2011, ArXiv.

[17]  Ricardo C. L. F. Oliveira,et al.  Robust ℋ︁2 static output feedback design starting from a parameter‐dependent state feedback controller for time‐invariant discrete‐time polytopic systems , 2011 .

[18]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order $\alpha$: The $0≪\alpha≪1$ Case , 2010, IEEE Transactions on Automatic Control.

[19]  N. Engheta On fractional calculus and fractional multipoles in electromagnetism , 1996 .

[20]  Mohamed Darouach,et al.  Robust stabilization of uncertain descriptor fractional-order systems , 2013, Autom..

[21]  Ju H. Park,et al.  Robust static output feedback H∞ control design for linear systems with polytopic uncertainties , 2015, Syst. Control. Lett..

[22]  Yuquan Chen,et al.  Necessary and sufficient admissibility condition of singular fractional order systems , 2016, CCC 2016.

[23]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[24]  Wang Yong Improved linear matrix inequalities stability criteria for fractional order systems and robust stabilization synthesis:The 0 , 2013 .

[25]  Yong Wang,et al.  The output feedback control synthesis for a class of singular fractional order systems. , 2017, ISA transactions.

[26]  Bing Chen,et al.  Necessary and sufficient conditions of observer-based stabilization for a class of fractional-order descriptor systems , 2018, Syst. Control. Lett..

[27]  I. Podlubny Fractional differential equations , 1998 .

[28]  Mohamed Darouach,et al.  Stabilization of singular fractional-order systems: An LMI approach , 2010, 18th Mediterranean Conference on Control and Automation, MED'10.

[29]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[30]  Yong Zhou,et al.  LMI-based robust control of fractional-order uncertain linear systems , 2011, Comput. Math. Appl..

[31]  Qing-Guo Wang,et al.  Static output feedback stabilization for fractional-order systems in T-S fuzzy models , 2016, Neurocomputing.