Enhanced bioactivity of a rapidly-dried sol-gel derived quaternary bioglass.

[1]  J. Ferreira,et al.  Synthesis and bioactivity assessment of high silica content quaternary glasses with Ca: P ratios of 1.5 and 1.67, made by a rapid sol-gel process. , 2018, Journal of biomedical materials research. Part A.

[2]  J. Ferreira,et al.  A hundred times faster: Novel, rapid sol‐gel synthesis of bio‐glass nanopowders (Si‐Na‐Ca‐P system, Ca:P = 1.67) without aging , 2017 .

[3]  J. Ferreira,et al.  The Influence of Cu2+ and Mn2+ Ions on the Structure and Crystallization of Diopside–Calcium Pyrophosphate Bioglasses , 2016 .

[4]  Gurbinder Kaur,et al.  Review and the state of the art: Sol-gel and melt quenched bioactive glasses for tissue engineering. , 2016, Journal of biomedical materials research. Part B, Applied biomaterials.

[5]  J. Ferreira,et al.  The effect of functional ions (Y3 +, F−, Ti4 +) on the structure, sintering and crystallization of diopside-calcium pyrophosphate bioglasses , 2016 .

[6]  G. Baldi,et al.  Bioactive Glasses with Low Ca/P Ratio and Enhanced Bioactivity , 2016, Materials.

[7]  H. Kim,et al.  Sol–gel synthesis of quaternary (P2O5)55–(CaO)25–(Na2O)(20−x)–(TiO2)x bioresorbable glasses for bone tissue engineering applications (x = 0, 5, 10, or 15) , 2015, Biomedical materials.

[8]  R. Pullar,et al.  Hydroxyapatite-based materials of marine origin: a bioactivity and sintering study. , 2015, Materials science & engineering. C, Materials for biological applications.

[9]  Chikara Ohtsuki,et al.  A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants , 2015, Journal of Materials Science: Materials in Medicine.

[10]  Julian R. Jones,et al.  A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials. , 2015, Physical chemistry chemical physics : PCCP.

[11]  M. Stevens,et al.  Cotton-wool-like bioactive glasses for bone regeneration. , 2014, Acta biomaterialia.

[12]  M. Fathi,et al.  Effect of different sol-gel synthesis processes on microstructural and morphological characteristics of hydroxyapatite-bioactive glass composite nanopowders , 2014, Journal of Advanced Ceramics.

[13]  G. Lefèvre,et al.  Attenuated Total Reflection - Infrared Spectroscopy Applied to the Study of Mineral - Aqueous Electrolyte Solution Interfaces: A General Overview and a Case Study , 2012 .

[14]  M. Ginebra,et al.  Dry mechanosynthesis of nanocrystalline calcium deficient hydroxyapatite: Structural characterisation , 2011 .

[15]  P. Sundberg,et al.  The split network analysis for exploring composition-structure correlations in multi-component glasses : II. Multinuclear NMR studies of alumino-borosilicates and glass-wool fibers , 2011 .

[16]  M. Menziani,et al.  New Insights into the Atomic Structure of 45S5 Bioglass by Means of Solid-State NMR Spectroscopy and Accurate First-Principles Simulations , 2010 .

[17]  P. González,et al.  Structural study of sol–gel silicate glasses by IR and Raman spectroscopies , 2009 .

[18]  Julian R. Jones,et al.  Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass , 2009 .

[19]  J. Faure,et al.  Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications , 2006 .

[20]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[21]  J. Knowles,et al.  Investigation of silica-iron-phosphate glasses for tissue engineering , 2006, Journal of materials science. Materials in medicine.

[22]  C. Paluszkiewicz,et al.  FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods , 2005 .

[23]  Julian R. Jones,et al.  Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). , 2003, Journal of biomedical materials research. Part A.

[24]  Ayako Oyane,et al.  Preparation and assessment of revised simulated body fluids. , 2003, Journal of biomedical materials research. Part A.

[25]  R. Angel,et al.  Compression mechanisms of coesite , 2003 .

[26]  Plinio Innocenzi,et al.  Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview , 2003 .

[27]  W. Tseng,et al.  Aging effect on the phase evolution of water-based sol-gel hydroxyapatite. , 2002, Biomaterials.

[28]  Larry L. Hench,et al.  Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics , 2001 .

[29]  W. L. Vasconcelos,et al.  Structural evolution of silica sols modified with formamide , 2001 .

[30]  W. L. Vasconcelos,et al.  Preparation of silica by sol-gel method using formamide , 2001 .

[31]  H. Nasu,et al.  Comparative Study of Structure of Silica Gels from Different Sources , 2000 .

[32]  K Aitasalo,et al.  Reconstruction of orbital floor fractures using bioactive glass. , 2000, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[33]  L. Stoch,et al.  Infrared spectroscopy in the investigation of oxide glasses structure , 1999 .

[34]  K. Gross,et al.  Critical ageing of hydroxyapatite sol-gel solutions. , 1998, Biomaterials.

[35]  Lisa C. Klein,et al.  Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes , 1988 .

[36]  J. Ferreira,et al.  Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time. , 2017, Materials science & engineering. C, Materials for biological applications.

[37]  W. Li,et al.  Aging Time and Temperature Effects on the Structure and Bioactivity of Gel-Derived 45S5 Glass-Ceramics , 2014 .

[38]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[39]  V. Sirutkaitis,et al.  FTIR, TEM and NMR Iinvestigations of Stöber Silica Nanoparticles , 2004 .

[40]  Anna Tampieri,et al.  Carbonated hydroxyapatite as bone substitute , 2003 .

[41]  Ioan Notingher,et al.  Application of FTIR and Raman Spectroscopy to Characterisation of Bioactive Materials and Living Cells , 2003 .

[42]  L. Claes,et al.  A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery. , 2001, Journal of biomedical materials research.

[43]  G. Spoto,et al.  Fourier-transform infrared and Raman spectra of pure and Al-, B-, Ti- and Fe-substituted silicalites: stretching-mode region , 1993 .