Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice

Letλi(L), λi(L*) denote the successive minima of a latticeL and its reciprocal latticeL*, and let [b1,..., bn] be a basis ofL that is reduced in the sense of Korkin and Zolotarev. We prove that and, where andγj denotes Hermite's constant. As a consequence the inequalities are obtained forn≥7. Given a basisB of a latticeL in ℝm of rankn andx∃ℝm, we define polynomial time computable quantitiesλ(B) andΜ(x,B) that are lower bounds for λ1(L) andΜ(x,L), whereΜ(x,L) is the Euclidean distance fromx to the closest vector inL. If in additionB is reciprocal to a Korkin-Zolotarev basis ofL*, then λ1(L)≤γn*λ(B) and.

[1]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[2]  C. Hermite Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. (Continuation). , .

[3]  Sergeĭ Sergeevich Ryshkov The geometry of positive quadratic forms , 1983 .

[4]  L. Mordell Review: J. W. S. Cassels, An introduction to the geometry of numbers , 1961 .

[5]  R. Guy Review: J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups , 1989 .

[6]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[7]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[8]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[9]  Ravi Kannan,et al.  Minkowski's Convex Body Theorem and Integer Programming , 1987, Math. Oper. Res..

[10]  A. Korkine,et al.  Sur les formes quadratiques , 1873 .

[11]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[12]  C. Hermite Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. , 1850 .

[13]  E. P. Baranovskii,et al.  CLASSICAL METHODS IN THE THEORY OF LATTICE PACKINGS , 1979 .

[14]  C. P. Schnorr,et al.  A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms , 1987, Theor. Comput. Sci..

[15]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[16]  B. L. Waerden Die Reduktionstheorie Der Positiven Quadratischen Formen , 1956 .

[17]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[18]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[19]  H. Groß Studien zur Theorie der quadratischen Formen , 1968 .

[20]  P. Cohn Symmetric Bilinear Forms , 1973 .

[21]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..