Stan

Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users’ and developers’ perspectives and illustrate with a simple but nontrivial nonlinear regression example.

[1]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[2]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[3]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[4]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[5]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[6]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[7]  M. David Semiautomatic Differentiation for Efficient Gradient Computations , 2004 .

[8]  S. Rabe-Hesketh,et al.  Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects , 2005 .

[9]  Martin Bücker,et al.  Automatic differentiation : applications, theory, and implementations , 2006 .

[10]  Andrew Thomas,et al.  The BUGS project: Evolution, critique and future directions , 2009, Statistics in medicine.

[11]  Ss Beal,et al.  NONMEM User’s Guides. (1989–2009) , 2009 .

[12]  Dorota Kurowicka,et al.  Generating random correlation matrices based on vines and extended onion method , 2009, J. Multivar. Anal..

[13]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[14]  David Huard,et al.  PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.

[15]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[16]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[17]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[18]  Andrew D. Martin,et al.  MCMCpack: Markov chain Monte Carlo in R , 2011 .

[19]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[20]  M. Betancourt Generalizing the No-U-Turn Sampler to Riemannian Manifolds , 2013, 1304.1920.

[21]  Aki Vehtari,et al.  GPstuff: Bayesian modeling with Gaussian processes , 2013, J. Mach. Learn. Res..

[22]  A. Gelman,et al.  The Great Society, Reagan's Revolution, and Generations of Presidential Voting , 2022, American Journal of Political Science.

[23]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[24]  Andrew Gelman,et al.  Automatic Variational Inference in Stan , 2015, NIPS.