Optimal Alphabets and Binary Labelings for BICM at Low SNR

Optimal binary labelings, input distributions, and input alphabets are analyzed for the so-called bit-interleaved coded modulation (BICM) capacity, paying special attention to the low signal-to-noise ratio (SNR) regime. For 8-ary pulse amplitude modulation (PAM) and for 0.75 bit/symbol, the folded binary code results in a higher capacity than the binary reflected Gray code (BRGC) and the natural binary code (NBC). The 1 dB gap between the additive white Gaussian noise (AWGN) capacity and the BICM capacity with the BRGC can be almost completely removed if the input symbol distribution is properly selected. First-order asymptotics of the BICM capacity for arbitrary input alphabets and distributions, dimensions, mean, variance, and binary labeling are developed. These asymptotics are used to define first-order optimal (FOO) constellations for BICM, i.e., constellations that make BICM achieve the Shannon limit -1.59 dB. It is shown that the Eb/N0 required for reliable transmission at asymptotically low rates in BICM can be as high as infinity, that for uniform input distributions and 8-PAM there are only 72 classes of binary labelings with a different first-order asymptotic behavior, and that this number is reduced to only 26 for 8-ary phase shift keying (PSK). A general answer to the question of FOO constellations for BICM is also given: using the Hadamard transform, it is found that for uniform input distributions, a constellation for BICM is FOO if and only if it is a linear projection of a hypercube. A constellation based on PAM or quadrature amplitude modulation input alphabets is FOO if and only if they are labeled by the NBC; if the constellation is based on PSK input alphabets instead, it can never be FOO if the input alphabet has more than four points, regardless of the labeling.

[1]  Michael P. Fitz,et al.  Constellation Design via Capacity Maximization , 2007, 2007 IEEE International Symposium on Information Theory.

[2]  Robert F. H. Fischer,et al.  (Gray) Mappings for Bit-Interleaved Coded Modulation , 2007, 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring.

[3]  Alex J. Grant,et al.  Optimal Puncturing Ratios and Energy Allocation for Multiple Parallel Concatenated Codes , 2009, IEEE Transactions on Information Theory.

[4]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[5]  Leszek Szczecinski,et al.  Distribution of max-log metrics for QAM-based BICM in fading channels , 2009, IEEE Transactions on Communications.

[6]  Hideki Imai,et al.  Correction to 'A New Multilevel Coding Method Using Error-Correcting Codes' , 1977, IEEE Trans. Inf. Theory.

[7]  Albert Guillén i Fàbregas,et al.  Bit-interleaved coded modulation with shaping , 2010, 2010 IEEE Information Theory Workshop.

[8]  Mohamed-Slim Alouini,et al.  A recursive algorithm for the exact BER computation of generalized hierarchical QAM constellations , 2003, IEEE Trans. Inf. Theory.

[9]  Mung Chiang,et al.  Duality between channel capacity and rate distortion with two-sided state information , 2002, IEEE Trans. Inf. Theory.

[10]  Wayne E. Stark,et al.  Capacity and Cutoff Rate of Noncoherent FSK with Nonselective Rician Fading , 1985, IEEE Trans. Commun..

[11]  Walter Lederman Handbook of applicable mathematics. Vol.3: Numerical methods , 1981 .

[12]  Erik G. Ström,et al.  On the optimality of the binary reflected Gray code , 2004, IEEE Transactions on Information Theory.

[13]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[14]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[15]  Erik Agrell,et al.  The Hadamard transform-a tool for index assignment , 1996, IEEE Trans. Inf. Theory.

[16]  Harry Nyquist Certain Topics in Telegraph Transmission Theory , 1928 .

[17]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation Revisited: A Mismatched Decoding Perspective , 2008, IEEE Transactions on Information Theory.

[18]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[19]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[20]  Aaron D. Wyner,et al.  Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .

[21]  Bayan S. Sharif,et al.  Bit-interleaved turbo-coded modulation using shaping coding , 2005, IEEE Communications Letters.

[22]  S. Aissa,et al.  Probability Density Functions of Logarithmic Likelihood Ratios in Rectangular QAM , 2006, 23rd Biennial Symposium on Communications, 2006.

[23]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[24]  Sergio Verdú,et al.  Second-order asymptotics of mutual information , 2004, IEEE Transactions on Information Theory.

[25]  Rudi de Buda Fast FSK signals and their demodulation , 1976, Canadian Electrical Engineering Journal.

[26]  H. Nyquist,et al.  Certain factors affecting telegraph speed , 1924, Journal of the A.I.E.E..

[27]  Mohamed-Slim Alouini,et al.  Hierarchical constellation for multi-resolution data transmission over block fading channels , 2004, IEEE Transactions on Wireless Communications.

[28]  Robert F. H. Fischer,et al.  Multilevel codes: Theoretical concepts and practical design rules , 1999, IEEE Trans. Inf. Theory.

[29]  Erik Dahlman,et al.  3G Evolution: HSPA and LTE for Mobile Broadband , 2007 .

[30]  H. Andrews,et al.  Hadamard transform image coding , 1969 .

[31]  Shlomo Shamai,et al.  Estimation of non-Gaussian random variables in Gaussian noise: Properties of the MMSE , 2008, 2008 IEEE International Symposium on Information Theory.

[32]  Minoru Okada,et al.  A hierarchical image transmission system in a fading channel , 1995, Proceedings of ICUPC '95 - 4th IEEE International Conference on Universal Personal Communications.

[33]  John R. Pierce,et al.  The early days of information theory , 1973, IEEE Trans. Inf. Theory.

[34]  L. Litwin,et al.  Error control coding , 2001 .

[35]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[36]  Rudi de Buda Fast FSK signals and their demodulation , 1976 .

[37]  Mohamed-Slim Alouini,et al.  Hierarchical constellation for multi-resolution data transmission over block fading channels , 2006 .

[38]  Lars K. Rasmussen,et al.  Classification of Unique Mappings for 8PSK Based on Bit-Wise Distance Spectra , 2009, IEEE Transactions on Information Theory.

[39]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation in the Wideband Regime , 2008, IEEE Transactions on Information Theory.

[40]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[41]  Andrew J. Viterbi,et al.  An Intuitive Justification and a Simplified Implementation of the MAP Decoder for Convolutional Codes , 1998, IEEE J. Sel. Areas Commun..

[42]  A. M. Abdullah,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1997 .

[43]  Sergio Verdú,et al.  Spectral efficiency in the wideband regime , 2002, IEEE Trans. Inf. Theory.

[44]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[45]  Brian K. Classon,et al.  Channel codng for 4G systems with adaptive modulation and codng , 2002, IEEE Wireless Communications.

[46]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[47]  Lutz H.-J. Lampe,et al.  An analytical approach for performance evaluation of BICM transmission over Nakagami-m fading channels , 2010, IEEE Transactions on Communications.

[48]  John B. Anderson,et al.  A bandwidth-efficient class of signal-space codes , 1978, IEEE Trans. Inf. Theory.

[49]  Robert F. H. Fischer,et al.  Asymptotically optimal mappings for bicm with m-pam and m 2 -qam , 2009 .

[50]  Dan Raphaeli,et al.  Constellation shaping for pragmatic turbo-coded modulation with high spectral efficiency , 2004, IEEE Transactions on Communications.

[51]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[52]  Leszek Szczecinski,et al.  Probability Density Function of Reliability Metrics in BICM with Arbitrary Modulation: Closed-form through Algorithmic Approach , 2008, IEEE Transactions on Communications.

[53]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.

[54]  Alex Alvarado,et al.  Corrections to “Bit-Interleaved Coded Modulation in the Wideband Regime” [Dec 08 5447-5455] , 2010, IEEE Transactions on Information Theory.

[55]  Charalampos Tsimenidis,et al.  Constellation Shaping for Bandwidth-Efficient Turbo-Coded Modulation With Iterative Receiver , 2007, IEEE Transactions on Wireless Communications.

[56]  D. Divsalar,et al.  On the Design of Turbo Codes , 1995 .

[57]  Jr. D. Costello,et al.  Channel Coding: The Road to Channel Capacity Fifty years of effort and invention have finally produced coding schemes that closely approach Shannon's channel capacity limit on memoryless communication channels. , 2007 .

[58]  Leszek Szczecinski,et al.  Exploiting UEP in QAM-based BICM: interleaver and code design , 2010, IEEE Transactions on Communications.

[59]  Alex Alvarado,et al.  Towards Fully Optimized BICM Transmissions , 2010 .

[60]  Ephraim Zehavi,et al.  8-PSK trellis codes for a Rayleigh channel , 1992, IEEE Trans. Commun..

[61]  Sohaib Khan,et al.  High Speed Downlink Packet Access (Hsdpa) , 2010 .

[62]  R. de Buda,et al.  Coherent Demodulation of Frequency-Shift Keying with Low Deviation Ratio , 1972, IEEE Trans. Commun..

[63]  Shlomo Shamai,et al.  Mutual information and minimum mean-square error in Gaussian channels , 2004, IEEE Transactions on Information Theory.

[64]  Hideki Imai,et al.  A new multilevel coding method using error-correcting codes , 1977, IEEE Trans. Inf. Theory.

[65]  Rodolfo Feick,et al.  On Adaptive BICM with Finite Block-Length and Simplified Metrics Calculation , 2006, IEEE Vehicular Technology Conference.

[66]  Øyvind Ytrehus,et al.  On the design of bit-interleaved turbo-coded modulation with low error floors , 2006, IEEE Transactions on Communications.

[67]  Henk Wymeersch,et al.  Linear Precoders for Bit-Interleaved Coded Modulation on AWGN Channels: Analysis and Design Criteria , 2008, IEEE Transactions on Information Theory.

[68]  Robert F. H. Fischer,et al.  Precoding and Signal Shaping for Digital Transmission , 2002 .

[69]  Giuseppe Caire,et al.  Error probability analysis of bit-interleaved coded modulation , 2006, IEEE Transactions on Information Theory.

[70]  T. Ottosson,et al.  Unequal bit-error protection in coherent M-ary PSK , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[71]  Erik Agrell,et al.  Electronic dispersion compensation by Hadamard transformation , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[72]  Shlomo Shamai,et al.  Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error , 2010, IEEE Transactions on Information Theory.

[73]  Erik G. Ström,et al.  Gray Coding for Multilevel Constellations in Gaussian Noise , 2007, IEEE Transactions on Information Theory.

[74]  John B. Anderson,et al.  Coded Modulation Systems , 2003 .

[75]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[76]  D. Zwillinger,et al.  Standard Mathematical Tables and Formulae , 1997, The Mathematical Gazette.

[77]  Frank Schreckenbach,et al.  Iterative Decoding of Bit-Interleaved Coded Modulation , 2007 .

[78]  Shlomo Shamai,et al.  On the capacity of the blockwise incoherent MPSK channel , 1998, IEEE Trans. Commun..

[79]  Erich E. Sutter,et al.  The Fast m-Transform: A Fast Computation of Cross-Correlations with Binary m-Sequences , 1991, SIAM J. Comput..

[80]  G. David Forney,et al.  Modulation and Coding for Linear Gaussian Channels , 1998, IEEE Trans. Inf. Theory.

[81]  Robert F. H. Fischer,et al.  Mappings for BICM in UWB Scenarios , 2011 .

[82]  Leszek Szczecinski,et al.  Distribution of L-values in gray-mapped M2-QAM: closed-form approximations and applications , 2009, IEEE Transactions on Communications.