Quantile Correlations and Quantile Autoregressive Modeling

In this article, we propose two important measures, quantile correlation (QCOR) and quantile partial correlation (QPCOR). We then apply them to quantile autoregressive (QAR) models, and introduce two valuable quantities, the quantile autocorrelation function (QACF) and the quantile partial autocorrelation function (QPACF). This allows us to extend the Box–Jenkins three-stage procedure (model identification, model parameter estimation, and model diagnostic checking) from classical autoregressive models to quantile autoregressive models. Specifically, the QPACF of an observed time series can be employed to identify the autoregressive order, while the QACF of residuals obtained from the fitted model can be used to assess the model adequacy. We not only demonstrate the asymptotic properties of QCOR and QPCOR, but also show the large sample results of QACF, QPACF, and the quantile version of the Box–Pierce test. Moreover, we obtain the bootstrap approximations to the distributions of parameter estimators and proposed measures. Simulation studies indicate that the proposed methods perform well in finite samples, and an empirical example is presented to illustrate usefulness. Supplementary materials for this article are available online.

[1]  R. Koenker,et al.  Quantile regression methods for reference growth charts , 2006, Statistics in medicine.

[2]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[3]  Zongwu Cai,et al.  Semiparametric quantile regression estimation in dynamic models with partially varying coefficients , 2012 .

[4]  Wai Keung Li,et al.  Diagnostic Checks in Time Series , 2003 .

[5]  P. Veronesi Stock Market Overreaction to Bad News in Good Times: A Rational Expectations Equilibrium Model , 1999 .

[6]  C. Gutenbrunner,et al.  Regression Rank Scores and Regression Quantiles , 1992 .

[7]  Christian Gourieroux,et al.  Dynamic quantile models , 2008 .

[8]  Xuming He,et al.  A Lack-of-Fit Test for Quantile Regression , 2003 .

[9]  R. Koenker,et al.  Regression Quantiles , 2007 .

[10]  Limin Peng,et al.  Survival Analysis With Quantile Regression Models , 2008 .

[11]  R. Koenker,et al.  Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity , 1990 .

[12]  Nils Blomqvist,et al.  On a Measure of Dependence Between two Random Variables , 1950 .

[13]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[14]  H. Bondell,et al.  Noncrossing quantile regression curve estimation. , 2010, Biometrika.

[15]  Xuming He,et al.  Practical Confidence Intervals for Regression Quantiles , 2005 .

[16]  A. Saleh,et al.  Autoregression Quantiles and Related Rank-Scores Processes , 1995 .

[17]  Jianqing Fan,et al.  Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.

[18]  Yang Yaning APPROXIMATING THE DISTRIBUTION OF M-ESTIMATORS IN LINEAR MODELS BY RANDOMLY WEIGHTED BOOTSTRAP , 2008 .

[19]  Lan Wang,et al.  Locally Weighted Censored Quantile Regression , 2009 .

[20]  M. McAleer,et al.  Regression quantiles for unstable autoregressive models , 2004 .

[21]  Guodong Li,et al.  TESTING FOR THRESHOLD MOVING AVERAGE WITH CONDITIONAL HETEROSCEDASTICITY , 2008 .

[22]  T. Rydén,et al.  Stylized Facts of Daily Return Series and the Hidden Markov Model , 1998 .

[23]  Xiaohong Chen,et al.  Copula-Based Nonlinear Quantile Autoregression , 2008 .

[24]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[25]  G. Box,et al.  Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models , 1970 .

[26]  Runze Li,et al.  NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS. , 2011, Annals of statistics.

[27]  M. Kendall Theoretical Statistics , 1956, Nature.

[28]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[29]  Chenlei Leng,et al.  A HYBRID BOOTSTRAP APPROACH TO UNIT ROOT TESTS , 2014 .

[30]  Julian Stander,et al.  A new Bayesian approach to quantile autoregressive time series model estimation and forecasting , 2012 .

[31]  Xuming He,et al.  Conditional growth charts , 2006 .

[32]  Feifang Hu,et al.  Markov Chain Marginal Bootstrap , 2002 .

[33]  Robert C. Jung,et al.  Stock Return Autocorrelations Revisited: A Quantile Regression Approach , 2011 .

[34]  Xingdong Feng,et al.  Wild bootstrap for quantile regression. , 2011, Biometrika.

[35]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[36]  Xuming He,et al.  Power Transformation Toward a Linear Regression Quantile , 2007 .

[37]  Hansheng Wang Forward Regression for Ultra-High Dimensional Variable Screening , 2009 .

[38]  Roger Koenker,et al.  Quantile Autoregression , 2006 .

[39]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[40]  R. Koenker Quantile Regression: Name Index , 2005 .

[41]  Roger Koenker,et al.  Conditional Quantile Estimation for Generalized Autoregressive Conditional Heteroscedasticity Models , 2009 .

[42]  Jianqing Fan,et al.  Quantile autoregression. Commentary , 2006 .

[43]  Jianqing Fan,et al.  Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .

[44]  P. Hall,et al.  On the Distribution of a Studentized Quantile , 1988 .

[45]  S. Chatterjee,et al.  Regression Analysis by Example , 1979 .

[46]  R. Carroll,et al.  Quantile Regression With Measurement Error , 2009, Journal of the American Statistical Association.

[47]  R. Tsay,et al.  Quantile Regression Models with Factor-Augmented Predictors and Information Criterion , 2011 .

[48]  Keith Knight,et al.  Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .

[49]  W Y Zhang,et al.  Discussion on `Sure independence screening for ultra-high dimensional feature space' by Fan, J and Lv, J. , 2008 .

[50]  Xuming He,et al.  Quantile Regression Estimates for a Class of Linear and Partially Linear Errors-in-Variables Models , 1997 .

[51]  J. S. Silva,et al.  Quantiles for Counts , 2002 .

[52]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[53]  Eve Bofingeb,et al.  ESTIMATION OF A DENSITY FUNCTION USING ORDER STATISTICS1 , 1975 .

[54]  Ali S. Hadi,et al.  Regression Analysis by Example: Chatterjee/Regression , 2006 .

[55]  Sung Y. Park,et al.  Quantile Autoregressive Distributed Lag Model with an Application to House Price Returns , 2013 .

[56]  Z. Ying,et al.  A simple resampling method by perturbing the minimand , 2001 .