Detection of individual 0.4–28 μm wavelength photons via impurity‐impact ionization in a solid‐state photomultiplier
暂无分享,去创建一个
Maryn G. Stapelbroek | Michael D. Petroff | M. Stapelbroek | W. Kleinhans | M. Petroff | William A. Kleinhans
[1] H. Grubin. The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.
[2] J. Wessel,et al. Infrared detection by an atomic vapor quantum counter , 1978 .
[3] B. F. Levine,et al. Single photon detection at 1.3 μm using a gated avalanche photodiode , 1984 .
[4] N. Bloembergen,et al. Solid State Infrared Quantum Counters , 1959 .
[5] A. G. Milnes,et al. Deep impurities in semiconductors , 1973 .
[6] N. Mott,et al. Electronic Processes In Non-Crystalline Materials , 1940 .
[7] Nevill Mott,et al. The theory of impurity conduction , 1961 .
[8] Federico Capasso,et al. New avalanche multiplication phenomenon in quantum well superlattices: Evidence of impact ionization across the band‐edge discontinuity , 1986 .
[9] J. Allam,et al. Near-single carrier-type multiplication in a multiple graded-well structure for a solid-state photomultiplier , 1987, IEEE Electron Device Letters.
[10] F. Capasso,et al. Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.
[11] R. Kearney,et al. Photon counting with photodiodes. , 1983, Applied optics.
[12] D. Pulfrey,et al. A new MOS photon-counting sensor operating in the above-breakdown regime , 1984, IEEE Transactions on Electron Devices.
[13] D. O'connor,et al. Time-Correlated Single Photon Counting , 1984 .