Convergence of SDP hierarchies for polynomial optimization on the hypersphere

We show how to bound the accuracy of a family of semi-definite programming relaxations for the problem of polynomial optimization on the hypersphere. Our method is inspired by a set of results from quantum information known as quantum de Finetti theorems. In particular, we prove a de Finetti theorem for a special class of real symmetric matrices to establish the existence of approximate representing measures for moment matrix relaxations.

[1]  Y. Nesterov Random walk in a simplex and quadratic optimization over convex polytopes , 2003 .

[2]  Jasper V. Stokman,et al.  Orthogonal Polynomials of Several Variables , 2001, J. Approx. Theory.

[3]  Matthias Christandl,et al.  One-and-a-Half Quantum de Finetti Theorems , 2007 .

[4]  D. Freedman,et al.  Finite Exchangeable Sequences , 1980 .

[5]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[6]  Jocelyn Quaintance,et al.  Spherical Harmonics and Linear Representations of Lie Groups , 2009 .

[7]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[8]  Yuan Xu,et al.  Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .

[9]  P. Parrilo,et al.  On the equivalence of algebraic approaches to the minimization of forms on the simplex , 2005 .

[10]  Yuan Zhou,et al.  Hypercontractivity, sum-of-squares proofs, and their applications , 2012, STOC '12.

[11]  Matthias Christandl,et al.  Reliable quantum state tomography. , 2011, Physical review letters.

[12]  Etienne de Klerk,et al.  The complexity of optimizing over a simplex, hypercube or sphere: a short survey , 2008, Central Eur. J. Oper. Res..

[13]  R. Renner,et al.  A de Finetti representation for finite symmetric quantum states , 2004, quant-ph/0410229.

[14]  Shuzhong Zhang,et al.  Approximation algorithms for homogeneous polynomial optimization with quadratic constraints , 2010, Math. Program..

[15]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[16]  Etienne de Klerk,et al.  Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming , 2002, J. Glob. Optim..

[17]  Graeme Mitchison,et al.  A most compendious and facile quantum de Finetti theorem , 2007 .

[18]  Jiawang Nie Sum of squares methods for minimizing polynomial forms over spheres and hypersurfaces , 2012 .

[19]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[20]  Monique Laurent,et al.  Revisiting two theorems of Curto and Fialkow on moment matrices , 2005 .

[21]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[22]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[23]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[24]  H. Weyl The Classical Groups , 1940 .

[25]  G. Arfken Mathematical Methods for Physicists , 1967 .

[26]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[27]  Jeong Whan Yoon,et al.  On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming , 2008 .

[28]  B. Reznick Uniform denominators in Hilbert's seventeenth problem , 1995 .

[29]  Renato Renner Symmetry implies independence , 2007 .

[30]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .

[31]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[32]  R. Hudson,et al.  Locally normal symmetric states and an analogue of de Finetti's theorem , 1976 .

[33]  L. Faybusovich Global Optimization of Homogeneous Polynomials on the Simplex and on the Sphere , 2004 .

[34]  Yinyu Ye,et al.  The cubic spherical optimization problems , 2012, Math. Comput..

[35]  Jean B. Lasserre,et al.  A New Look at Nonnegativity on Closed Sets and Polynomial Optimization , 2010, SIAM J. Optim..

[36]  W. Marsden I and J , 2012 .

[37]  Tuong Ton-That,et al.  Lie group representations and harmonic polynomials of a matrix variable , 1976 .

[38]  Chen Ling,et al.  Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations , 2009, SIAM J. Optim..

[39]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[40]  Pablo A. Parrilo,et al.  A PTAS for the minimization of polynomials of fixed degree over the simplex , 2006, Theor. Comput. Sci..