Earth mover's distances on discrete surfaces

We introduce a novel method for computing the earth mover's distance (EMD) between probability distributions on a discrete surface. Rather than using a large linear program with a quadratic number of variables, we apply the theory of optimal transportation and pass to a dual differential formulation with linear scaling. After discretization using finite elements (FEM) and development of an accompanying optimization method, we apply our new EMD to problems in graphics and geometry processing. In particular, we uncover a class of smooth distances on a surface transitioning from a purely spectral distance to the geodesic distance between points; these distances also can be extended to the volume inside and outside the surface. A number of additional applications of our machinery to geometry problems in graphics are presented.

[1]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[2]  Yuying Li,et al.  A Newton Acceleration of the Weiszfeld Algorithm for Minimizing the Sum of Euclidean Distances , 1995, Comput. Optim. Appl..

[3]  F. Plastria The Weiszfeld Algorithm: Proof, Amendments, and Extensions , 2011 .

[4]  Yuan Yao,et al.  Statistical ranking and combinatorial Hodge theory , 2008, Math. Program..

[5]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[6]  M. Shirosaki Another proof of the defect relation for moving targets , 1991 .

[7]  Filippo Santambrogio Absolute continuity and summability of transport densities: simpler proofs and new estimates , 2009 .

[8]  Olga Sorkine-Hornung,et al.  Weighted averages on surfaces , 2013, ACM Trans. Graph..

[9]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[10]  C. Villani Topics in Optimal Transportation , 2003 .

[11]  Yaron Lipman,et al.  Conformal Wasserstein distance: II. computational aspects and extensions , 2013, Math. Comput..

[12]  Leonidas J. Guibas,et al.  Soft Maps Between Surfaces , 2012, Comput. Graph. Forum.

[13]  Marcel Campen,et al.  Practical Anisotropic Geodesy , 2013, SGP '13.

[14]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[15]  Frédéric Chazal,et al.  Geometric Inference for Measures based on Distance Functions , 2011 .

[16]  R. McCann,et al.  Monge's transport problem on a Riemannian manifold , 2001 .

[17]  Thomas A. Funkhouser,et al.  Biharmonic distance , 2010, TOGS.

[18]  Bailin Deng,et al.  Interactive design exploration for constrained meshes , 2015, Comput. Aided Des..

[19]  Konrad Polthier,et al.  Identifying Vector Field Singularities Using a Discrete Hodge Decomposition , 2002, VisMath.

[20]  David E. Breen,et al.  Fitting a woven cloth model to a curved surface: dart insertion , 1996, IEEE Computer Graphics and Applications.

[21]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[22]  Thomas A. Funkhouser,et al.  Fuzzy Geodesics and Consistent Sparse Correspondences For: eformable Shapes , 2010 .

[23]  Hongkai Zhao,et al.  A local mesh method for solving PDEs on point clouds , 2013 .

[24]  Lei Guo,et al.  An automated pipeline for cortical sulcal fundi extraction , 2010, Medical Image Anal..

[25]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  I. Daubechies,et al.  Conformal Wasserstein distances: Comparing surfaces in polynomial time , 2011, 1103.4408.

[27]  Julien Rabin,et al.  Sliced and Radon Wasserstein Barycenters of Measures , 2014, Journal of Mathematical Imaging and Vision.

[28]  Leonidas J. Guibas,et al.  Dirichlet Energy for Analysis and Synthesis of Soft Maps , 2013 .

[29]  Allen R. Tannenbaum,et al.  Texture Mapping via Optimal Mass Transport , 2010, IEEE Transactions on Visualization and Computer Graphics.

[30]  Yoshitsugu Yamamoto,et al.  Metric-Preserving Reduction of Earth Mover's Distance , 2009, Asia Pac. J. Oper. Res..

[31]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[32]  G. Schwarz Hodge Decomposition - A Method for Solving Boundary Value Problems , 1995 .

[33]  Michael Werman,et al.  Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[34]  Mathieu Desbrun,et al.  HOT: Hodge-optimized triangulations , 2011, SIGGRAPH 2011.

[35]  S. Yau,et al.  Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere Equations , 2013, 1302.5472.

[36]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[37]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[38]  Kim-Chuan Toh,et al.  Globally and Quadratically Convergent Algorithm for Minimizing the Sum of Euclidean Norms , 2003 .

[39]  B. He,et al.  Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities , 2000 .

[40]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[41]  M. V. D. Panne,et al.  Displacement Interpolation Using Lagrangian Mass Transport , 2011 .

[42]  M. Beckmann A Continuous Model of Transportation , 1952 .

[43]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[44]  Pierre Alliez,et al.  An Optimal Transport Approach to Robust Reconstruction and Simplification of 2d Shapes , 2022 .

[45]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[46]  Mathieu Desbrun,et al.  Blue noise through optimal transport , 2012, ACM Trans. Graph..

[47]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[48]  J. PUENTE,et al.  CONFORMAL WASSERSTEIN DISTANCE : II , 2011 .

[49]  J. Brian Burns,et al.  Path planning using Laplace's equation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[50]  Thomas A. Funkhouser,et al.  Interior Distance Using Barycentric Coordinates , 2009, Comput. Graph. Forum.

[51]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[52]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Jian Liang,et al.  Solving Partial Differential Equations on Point Clouds , 2013, SIAM J. Sci. Comput..

[54]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[55]  I. Petrovsky,et al.  Lectures On Partial Differential Equations , 1962 .

[56]  Shaohua Pan,et al.  Smoothing Newton Method for Minimizing the Sum of p-Norms , 2008 .

[57]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[58]  Alberto Dou,et al.  Lectures on partial differential equations of first order , 1972 .

[59]  Frédéric Chazal,et al.  Geometric Inference for Probability Measures , 2011, Found. Comput. Math..

[60]  L. Qi,et al.  A primal-dual algorithm for minimizing a sum of Euclidean norms , 2002 .

[61]  Guillaume Carlier,et al.  Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..