Computing geodesic spectra of surfaces

Surface classification is one of the most fundamental problems in geometric modeling. Surfaces can be classified according to their conformal structures. In general, each topological equivalent class has infinite conformally equivalent classes. This paper introduces a novel method to classify surfaces by their conformal structures. Surfaces in the same conformal class share the same uniformization metric, which induces constant Gaussian curvature everywhere on the surface. Under the uniformization metric, each homotopy class of a closed curves on the surface has a unique geodesic. The lengths of all closed geodesics form the geodesic spectrum. The map from the fundamental group to the geodesic spectrum completely determines the conformal structure of the surface. We first compute the uniformization metric using discrete Ricci flow method, then compute the Fuchsian group generators, finally deduce the geodesic spectra from the generators in a closed form. The method is rigorous and practical. Geodesic spectra is applied as the signature of surfaces for shape comparison and classification.

[1]  Jindong Chen,et al.  Shortest Paths on a Polyhedron , Part I : Computing Shortest Paths , 1990 .

[2]  S. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, SIGGRAPH 2005.

[3]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[4]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2005, Discret. Comput. Geom..

[5]  Bernard Chazelle,et al.  Matching 3D models with shape distributions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[6]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[7]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1994, SCG '94.

[8]  B. Chow,et al.  The Ricci flow on surfaces , 2004 .

[9]  Hong Qin,et al.  Manifold splines , 2006, Graph. Model..

[10]  Yalin Wang,et al.  Optimal global conformal surface parameterization , 2004, IEEE Visualization 2004.

[11]  Peter Schröder,et al.  Discrete Willmore flow , 2005, SIGGRAPH Courses.

[12]  Shing-Tung Yau,et al.  Surface classification using conformal structures , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[13]  Franck Hétroy Constriction Computation using Surface Curvature , 2005, Eurographics.

[14]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[15]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[16]  Sanjiv Kapoor,et al.  Efficient computation of geodesic shortest paths , 1999, STOC '99.

[17]  Hong Qin,et al.  Topology-driven surface mappings with robust feature alignment , 2005, VIS 05. IEEE Visualization, 2005..

[18]  Richard S. Hamilton,et al.  The Ricci flow on surfaces , 1986 .

[19]  Xianfeng Gu,et al.  Computing surface hyperbolic structure and real projective structure , 2006, SPM '06.

[20]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[22]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[23]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[24]  Shing-Tung Yau,et al.  Global Conformal Parameterization , 2003, Symposium on Geometry Processing.

[25]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[27]  Philip L. Bowers,et al.  INTRODUCTION TO CIRCLE PACKING: A REVIEW , 2008 .