Multi-Resolution Continuous Normalizing Flows

Recent work has shown that Neural Ordinary Differential Equations (ODEs) can serve as generative models of images using the perspective of Continuous Normalizing Flows (CNFs). Such models offer exact likelihood calculation, and invertible generation/density estimation. In this work we introduce a Multi-Resolution variant of such models (MRCNF), by characterizing the conditional distribution over the additional information required to generate a fine image that is consistent with the coarse image. We introduce a transformation between resolutions that allows for no change in the log likelihood. We show that this approach yields comparable likelihood values for various image datasets, with improved performance at higher resolutions, with fewer parameters, using only 1 GPU. Further, we examine the out-of-distribution properties of MRCNFs, and find that they are similar to those of other likelihood-based generative models.

[1]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[2]  Thomas G. Dietterich,et al.  Deep Anomaly Detection with Outlier Exposure , 2018, ICLR.

[3]  Elyas Sabeti,et al.  Data Discovery and Anomaly Detection Using Atypicality: Theory , 2017, IEEE Transactions on Information Theory.

[4]  Surya Ganguli,et al.  Deep Unsupervised Learning using Nonequilibrium Thermodynamics , 2015, ICML.

[5]  E. Tabak,et al.  A Family of Nonparametric Density Estimation Algorithms , 2013 .

[6]  Jascha Sohl-Dickstein,et al.  Invertible Convolutional Flow , 2019, NeurIPS.

[7]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[8]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[9]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[10]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[11]  Ashish Khetan,et al.  PacGAN: The Power of Two Samples in Generative Adversarial Networks , 2017, IEEE Journal on Selected Areas in Information Theory.

[12]  Philip H. S. Torr,et al.  STEER : Simple Temporal Regularization For Neural ODEs , 2020, NeurIPS.

[13]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[14]  Tali Dekel,et al.  SinGAN: Learning a Generative Model From a Single Natural Image , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[15]  Jakub M. Tomczak,et al.  The Convolution Exponential and Generalized Sylvester Flows , 2020, NeurIPS.

[16]  Pieter Abbeel,et al.  PixelSNAIL: An Improved Autoregressive Generative Model , 2017, ICML.

[17]  Ali Razavi,et al.  Generating Diverse High-Fidelity Images with VQ-VAE-2 , 2019, NeurIPS.

[18]  Sergio Gomez Colmenarejo,et al.  Parallel Multiscale Autoregressive Density Estimation , 2017, ICML.

[19]  Pascal Vincent,et al.  A Closer Look at the Optimization Landscapes of Generative Adversarial Networks , 2019, ICLR.

[20]  Ilya Sutskever,et al.  Generating Long Sequences with Sparse Transformers , 2019, ArXiv.

[21]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[22]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[23]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[24]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[25]  R. Srikant,et al.  Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks , 2017, ICLR.

[26]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[27]  Stefano Ermon,et al.  Improved Techniques for Training Score-Based Generative Models , 2020, NeurIPS.

[28]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Yang Song,et al.  Generative Modeling by Estimating Gradients of the Data Distribution , 2019, NeurIPS.

[30]  Eric Nalisnick,et al.  Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..

[31]  Jan Kautz,et al.  NVAE: A Deep Hierarchical Variational Autoencoder , 2020, NeurIPS.

[32]  David Duvenaud,et al.  Neural Ordinary Differential Equations , 2018, NeurIPS.

[33]  Pieter Abbeel,et al.  Denoising Diffusion Probabilistic Models , 2020, NeurIPS.

[34]  Matthew J. Johnson,et al.  Learning Differential Equations that are Easy to Solve , 2020, NeurIPS.

[35]  Ivan Grubisic,et al.  Densely connected normalizing flows , 2021, NeurIPS.

[36]  Yee Whye Teh,et al.  Detecting Out-of-Distribution Inputs to Deep Generative Models Using a Test for Typicality , 2019, ArXiv.

[37]  Matthias Bethge,et al.  A note on the evaluation of generative models , 2015, ICLR.

[38]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[39]  Koray Kavukcuoglu,et al.  Pixel Recurrent Neural Networks , 2016, ICML.

[40]  Rob Fergus,et al.  Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks , 2015, NIPS.

[41]  Edward H. Adelson,et al.  PYRAMID METHODS IN IMAGE PROCESSING. , 1984 .

[42]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[43]  Yang Song,et al.  MintNet: Building Invertible Neural Networks with Masked Convolutions , 2019, NeurIPS.

[44]  Iain Murray,et al.  Neural Spline Flows , 2019, NeurIPS.

[45]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[46]  Adam M. Oberman,et al.  How to Train Your Neural ODE: the World of Jacobian and Kinetic Regularization , 2020, ICML.

[47]  Mi-Yen Yeh,et al.  Accelerating Continuous Normalizing Flow with Trajectory Polynomial Regularization , 2020, AAAI.

[48]  P. Burt Fast filter transform for image processing , 1981 .

[49]  Oliver Wang,et al.  MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[51]  David Duvenaud,et al.  FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models , 2018, ICLR.

[52]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[53]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[54]  Stefano Ermon,et al.  Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models , 2017, AAAI.

[55]  Kibok Lee,et al.  A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks , 2018, NeurIPS.

[56]  Jordi Luque,et al.  Input complexity and out-of-distribution detection with likelihood-based generative models , 2020, ICLR.

[57]  Razvan Pascanu,et al.  On the difficulty of training recurrent neural networks , 2012, ICML.

[58]  Xingjian Li,et al.  OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport , 2020, ArXiv.

[59]  Mark Chen,et al.  Distribution Augmentation for Generative Modeling , 2020, ICML.

[60]  Jon Sneyers,et al.  FLIF: Free lossless image format based on MANIAC compression , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[61]  Jun Zhu,et al.  VFlow: More Expressive Generative Flows with Variational Data Augmentation , 2020, ICML.

[62]  Anders Høst-Madsen,et al.  Data Discovery and Anomaly Detection Using Atypicality for Real-Valued Data , 2019, Entropy.

[63]  W. Marsden I and J , 2012 .

[64]  Sergey Levine,et al.  Stochastic Adversarial Video Prediction , 2018, ArXiv.

[65]  Shakir Mohamed,et al.  Variational Inference with Normalizing Flows , 2015, ICML.

[66]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[67]  Abhishek Kumar,et al.  Score-Based Generative Modeling through Stochastic Differential Equations , 2020, ICLR.

[68]  Max Welling,et al.  Emerging Convolutions for Generative Normalizing Flows , 2019, ICML.

[69]  Konstantinos G. Derpanis,et al.  Wavelet Flow: Fast Training of High Resolution Normalizing Flows , 2020, NeurIPS.

[70]  Yee Whye Teh,et al.  Do Deep Generative Models Know What They Don't Know? , 2018, ICLR.

[71]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[72]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[73]  Ligang Liu,et al.  Generative Flows with Matrix Exponential , 2020, ICML.

[74]  David Duvenaud,et al.  Invertible Residual Networks , 2018, ICML.

[75]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[76]  R Devon Hjelm,et al.  On Adversarial Mixup Resynthesis , 2019, NeurIPS.

[77]  Andrew Gordon Wilson,et al.  Why Normalizing Flows Fail to Detect Out-of-Distribution Data , 2020, NeurIPS.

[78]  Aaron C. Courville,et al.  Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models , 2020, ArXiv.

[79]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[80]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[81]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[82]  Emiel Hoogeboom,et al.  Integer Discrete Flows and Lossless Compression , 2019, NeurIPS.

[83]  Eduard H. Hovy,et al.  MaCow: Masked Convolutional Generative Flow , 2019, NeurIPS.

[84]  Ole Winther,et al.  Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow , 2020, NeurIPS.

[85]  Léon Bottou,et al.  Towards Principled Methods for Training Generative Adversarial Networks , 2017, ICLR.

[86]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[87]  Tadeusz Styś,et al.  A discrete maximum principle , 1981 .

[88]  David Duvenaud,et al.  Residual Flows for Invertible Generative Modeling , 2019, NeurIPS.

[89]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[90]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[91]  Vincent Y. F. Tan,et al.  On Robustness of Neural Ordinary Differential Equations , 2020, ICLR.

[92]  Jaakko Lehtinen,et al.  Analyzing and Improving the Image Quality of StyleGAN , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[93]  Ivan Kobyzev,et al.  Normalizing Flows: An Introduction and Review of Current Methods , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[95]  Dustin Tran,et al.  Image Transformer , 2018, ICML.

[96]  Nal Kalchbrenner,et al.  Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling , 2018, ICLR.

[97]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[98]  Ioannis Mitliagkas,et al.  Adversarial score matching and improved sampling for image generation , 2020, ICLR.

[99]  Jiaming Song,et al.  Denoising Diffusion Implicit Models , 2021, ICLR.

[100]  Pieter Abbeel,et al.  Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design , 2019, ICML.

[101]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[102]  Tim Salimans,et al.  Axial Attention in Multidimensional Transformers , 2019, ArXiv.

[103]  You Lu,et al.  Woodbury Transformations for Deep Generative Flows , 2020, NeurIPS.

[104]  Alexander A. Alemi,et al.  WAIC, but Why? Generative Ensembles for Robust Anomaly Detection , 2018 .