On the minimum order of $k$-cop win graphs
暂无分享,去创建一个
Anthony Bonato | Andrew Beveridge | William Baird | Paolo Codenotti | Silviya Valeva | Aaron Maurer | John McCauley | A. Bonato | Andrew Beveridge | William Baird | Silviya Valeva | Paolo Codenotti | Aaron Maurer | J. McCauley
[1] Linyuan Lu,et al. On Meyniel's conjecture of the cop number , 2012, J. Graph Theory.
[2] Tchébichef,et al. Mémoire sur les nombres premiers. , 1852 .
[3] Anthony Bonato,et al. Almost all cop-win graphs contain a universal vertex , 2012, Discret. Math..
[4] Peter Winkler,et al. Vertex-to-vertex pursuit in a graph , 1983, Discret. Math..
[5] Pawel Pralat. When does a random graph have constant cop number? , 2010, Australas. J Comb..
[6] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[7] Anthony Bonato,et al. Cops and Robbers from a distance , 2010, Theor. Comput. Sci..
[8] G. Exoo,et al. Dynamic Cage Survey , 2011 .
[9] Anthony Bonato,et al. Cops and Robbers on Graphs Based on Designs , 2013 .
[10] Richard J. Nowakowski,et al. Cops, Robber and traps. , 2001 .
[11] Kathryn Fraughnaugh,et al. Introduction to graph theory , 1973, Mathematical Gazette.
[12] Martin Aigner,et al. A game of cops and robbers , 1984, Discret. Appl. Math..
[13] Anthony Bonato,et al. The Game of Cops and Robbers on Graphs , 2011 .