Eigenvalue estimates for 3-Sasaki structures

We obtain new lower bounds for the first non-zero eigenvalue of the scalar sub-Laplacian for 3-Sasaki metrics, improving the Lichnerowicz-Obata type estimates by Ivanov et al. in [16, 17]. The limiting eigenspace is fully decribed in terms of the automorphism algebra. Our results can be thought of as an analogue of the Lichnerowicz-Matsushima estimate for Kähler-Einstein metrics. In dimension 7, if the automorphism algebra is non-vanishing, we also compute the second eigenvalue for the sub-Laplacian and construct explicit eigenfunctions. In addition, for all metrics in the canonical variation of the 3-Sasaki metric we give a lower bound for the spectrum of the Riemannian Laplace operator, depending only on scalar curvature and dimension. We also strengthen a result pertaining to the growth rate of harmonic functions, due to Conlon, Hein&Sun [12, 15], in the case of hyperkähler cones. In this setup we also describe the space of holomorphic functions. 2020 Mathematics Subject Classification: Primary 53C25, 53C26, 58C40, 35H10.

[1]  Jeff Cheeger,et al.  Spectral geometry of singular Riemannian spaces , 1983 .

[2]  Mitchell Faulk Asymptotically conical Calabi-Yau orbifolds, I , 2018 .

[3]  Uwe Semmelmann,et al.  The $G_2$ geometry of $3$-Sasaki structures , 2021, 2101.04494.

[4]  Fabrice Baudoin,et al.  Transverse Weitzenb\"ock formulas and curvature dimension inequalities on Riemannian foliations with totally geodesic leaves , 2014, 1408.0548.

[5]  H. Hein,et al.  Calabi-Yau manifolds with isolated conical singularities , 2016, 1607.02940.

[6]  FANO MANIFOLDS, CONTACT STRUCTURES, AND QUATERNIONIC GEOMETRY , 1994, dg-ga/9409001.

[7]  U. Semmelmann,et al.  Vanishing theorems for quaternionic Kähler manifolds , 2002 .

[8]  S. Ivanov,et al.  The Sharp Lower Bound of the First Eigenvalue of the Sub-Laplacian on a Quaternionic Contact Manifold , 2011 .

[9]  Chenxu He,et al.  Linear stability of Perelman's $ν$-entropy on symmetric spaces of compact type , 2013, 1304.2697.

[10]  Ken Richardson,et al.  Lichnerowicz and Obata theorems for foliations , 2002 .

[11]  L. Ugarte,et al.  Strong Kähler with torsion structures from almost contact manifolds , 2009, 0909.3946.

[12]  Fabrice Baudoin,et al.  The Lichnerowicz–Obata Theorem on Sub-Riemannian Manifolds with Transverse Symmetries , 2014, 1403.2453.

[13]  D. Alekseevsky,et al.  Spectral properties of the twistor fibration of a quaternion Kähler manifold , 2000 .

[14]  Fabrice Baudoin,et al.  Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries , 2011, 1101.3590.

[15]  J. Cheeger,et al.  On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay , 1994 .

[16]  Guofang Wang,et al.  Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds , 2006, math/0607586.

[17]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[18]  Xiaodong Wang,et al.  A new characterization of the CR sphere and the sharp eigenvalue estimate for the Kohn Laplacian , 2013, 1308.3403.

[19]  S. Ivanov,et al.  The Sharp Lower Bound of the First Eigenvalue of the Sub-Laplacian on a Quaternionic Contact Manifold , 2011, The Journal of Geometric Analysis.

[20]  C. Boyer,et al.  $3$-Sasakian manifolds , 1998, hep-th/9810250.