Eigenvalue estimates for 3-Sasaki structures
暂无分享,去创建一个
[1] Jeff Cheeger,et al. Spectral geometry of singular Riemannian spaces , 1983 .
[2] Mitchell Faulk. Asymptotically conical Calabi-Yau orbifolds, I , 2018 .
[3] Uwe Semmelmann,et al. The $G_2$ geometry of $3$-Sasaki structures , 2021, 2101.04494.
[4] Fabrice Baudoin,et al. Transverse Weitzenb\"ock formulas and curvature dimension inequalities on Riemannian foliations with totally geodesic leaves , 2014, 1408.0548.
[5] H. Hein,et al. Calabi-Yau manifolds with isolated conical singularities , 2016, 1607.02940.
[6] FANO MANIFOLDS, CONTACT STRUCTURES, AND QUATERNIONIC GEOMETRY , 1994, dg-ga/9409001.
[7] U. Semmelmann,et al. Vanishing theorems for quaternionic Kähler manifolds , 2002 .
[8] S. Ivanov,et al. The Sharp Lower Bound of the First Eigenvalue of the Sub-Laplacian on a Quaternionic Contact Manifold , 2011 .
[9] Chenxu He,et al. Linear stability of Perelman's $ν$-entropy on symmetric spaces of compact type , 2013, 1304.2697.
[10] Ken Richardson,et al. Lichnerowicz and Obata theorems for foliations , 2002 .
[11] L. Ugarte,et al. Strong Kähler with torsion structures from almost contact manifolds , 2009, 0909.3946.
[12] Fabrice Baudoin,et al. The Lichnerowicz–Obata Theorem on Sub-Riemannian Manifolds with Transverse Symmetries , 2014, 1403.2453.
[13] D. Alekseevsky,et al. Spectral properties of the twistor fibration of a quaternion Kähler manifold , 2000 .
[14] Fabrice Baudoin,et al. Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries , 2011, 1101.3590.
[15] J. Cheeger,et al. On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay , 1994 .
[16] Guofang Wang,et al. Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds , 2006, math/0607586.
[17] Michèle Vergne,et al. Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .
[18] Xiaodong Wang,et al. A new characterization of the CR sphere and the sharp eigenvalue estimate for the Kohn Laplacian , 2013, 1308.3403.
[19] S. Ivanov,et al. The Sharp Lower Bound of the First Eigenvalue of the Sub-Laplacian on a Quaternionic Contact Manifold , 2011, The Journal of Geometric Analysis.
[20] C. Boyer,et al. $3$-Sasakian manifolds , 1998, hep-th/9810250.