High-efficiency hydrogen evolution reaction photocatalyst for water splitting of Type-II β-AsP/g-C3N4 van der Waals heterostructure

[1]  P. Lu,et al.  A promising type-II β-AsP/g-C6N6 van der Waals heterostructure photocatalyst for water splitting: a first-principles study. , 2022, Physical chemistry chemical physics : PCCP.

[2]  Alaa A. A. Aljabali,et al.  2D materials, synthesis, characterization and toxicity: A critical review. , 2022, Chemico-biological interactions.

[3]  K. Atacan,et al.  Fabrication of heterostructured CdS/g-C3N4/ZnFe2O4 nanocomposite synthesized through ultrasonic-assisted method for efficient photocatalytic hydrogen production , 2022, Applied Surface Science.

[4]  Jia Yang,et al.  Borate particulate photocatalysts for photocatalytic applications: A review , 2022, International Journal of Hydrogen Energy.

[5]  P. Guan,et al.  Design and analysis of III-V two-dimensional van der Waals heterostructures for ultra-thin solar cells , 2022, Applied Surface Science.

[6]  Xiaoyong Lai,et al.  First-principles calculations of 0D/2D GQDs-MoS2 mixed van der Waals heterojunctions for photocatalysis: a transition from type I to type II. , 2022, Physical chemistry chemical physics : PCCP.

[7]  P. Lu,et al.  Type‐II van der Waals Heterostructures Based on AsP and Transition Metal Dichalcogenides: Great Promise for Applications in Solar Cell , 2022, physica status solidi (RRL) – Rapid Research Letters.

[8]  J. Davim,et al.  Energy Conversion Strategies for Wind Energy System: Electrical, Mechanical and Material Aspects , 2022, Materials.

[9]  Hanyu Liu,et al.  Ab initio high-throughput screening of transition metal double chalcogenide monolayers as highly efficient bifunctional catalysts for photochemical and photoelectrochemical water splitting , 2022, Journal of Materials Chemistry A.

[10]  Jun Lin,et al.  Construction of Au/g-C3N4/ZnIn2S4 plasma photocatalyst heterojunction composite with 3D hierarchical microarchitecture for visible-light-driven hydrogen production , 2021, International Journal of Hydrogen Energy.

[11]  P. Guan,et al.  Quasiparticle energies and significant exciton effects of monolayered blue arsenic phosphorus conformers. , 2021, Physical chemistry chemical physics : PCCP.

[12]  M. Aziz Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety , 2021, Energies.

[13]  Fusheng Zhang,et al.  Type-II AsP/Sc2CO2 van der Waals heterostructure: an excellent photocatalyst for overall water splitting , 2021 .

[14]  Hui Xu,et al.  Advances in hydrogen production from electrocatalytic seawater splitting. , 2021, Nanoscale.

[15]  Ying Shi,et al.  Two-dimensional MoSSe/g-GeC van der waals heterostructure as promising multifunctional system for solar energy conversion , 2021 .

[16]  R. Ahuja,et al.  Computational identification of efficient 2D Aluminium chalcogenides monolayers for optoelectronics and photocatalysts applications , 2021 .

[17]  Hong Chen,et al.  Theoretical insight into two-dimensional g-C6N6/InSe van der Waals Heterostructure: A promising visible-light photocatalyst , 2021, Applied Surface Science.

[18]  K. Atacan,et al.  Construction of a non-enzymatic electrochemical sensor based on CuO/g-C3N4 composite for selective detection of hydrogen peroxide , 2021, Materials Chemistry and Physics.

[19]  Li Zhang,et al.  Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting , 2021 .

[20]  A. Datta,et al.  Designing C6N6/C2N van der Waals heterostructures for photogenerated charge carrier separation. , 2021, Physical chemistry chemical physics : PCCP.

[21]  K. Arifin,et al.  Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review , 2021 .

[22]  Tingting Zhao,et al.  Probing the electronic structure and photocatalytic performance of g-SiC/MoSSe van der Waals heterostructures: A first-principle study , 2021 .

[23]  Yuchen Cao,et al.  A Review of Seasonal Hydrogen Storage Multi-Energy Systems Based on Temporal and Spatial Characteristics , 2021, Journal of Renewable Materials.

[24]  Zhengguo Zhang,et al.  Interfacing CdS particles on Ni foam as a three-dimensional monolithic photocatalyst for efficient visible-light-driven H2 evolution , 2020 .

[25]  Ying Shi,et al.  Two-dimensional BP/β-AsP van der Waals heterostructures as promising photocatalyst for water splitting , 2020 .

[26]  Jianliang Cao,et al.  Palladium modified ZnFe2O4/g-C3N4 nanocomposite as an efficiently magnetic recycling photocatalyst , 2020 .

[27]  N. Shetti,et al.  Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting – A review , 2020, International Journal of Hydrogen Energy.

[28]  Ze-hua Liu,et al.  SiI2 monolayer as a promising photocatalyst for water splitting hydrogen production under the irradiation of solar light , 2020 .

[29]  A. K. Ray,et al.  Hydrogen production from aqueous triethanolamine solution using Eosin Y-sensitized ZnO photocatalyst doped with platinum , 2020 .

[30]  Shuyuan Xiao,et al.  2D CdO‐Based Heterostructure as a Promising Visible Light Water‐Splitting Photocatalyst , 2020, physica status solidi (a).

[31]  Guangming Zeng,et al.  Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting , 2020 .

[32]  M. Rosen,et al.  A review of energy storage types, applications and recent developments , 2020 .

[33]  Y. Shan,et al.  Electronic structure and hydrogen evolution reaction in Janus monolayer MoSSe regulated by strain engineering , 2020, Journal of Physics D: Applied Physics.

[34]  P. Jin,et al.  Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants , 2019, Applied Catalysis B: Environmental.

[35]  Minglei Sun,et al.  First-Principles Study on Transition-Metal Dichalcogenide/BSe van der Waals Heterostructures: A Promising Water-Splitting Photocatalyst , 2019, The Journal of Physical Chemistry C.

[36]  Wencheng Tang,et al.  A two-dimensional vertical van der Waals heterostructure based on g-GaN and Mg(OH)2 used as a promising photocatalyst for water splitting: A first-principles calculation , 2019, Journal of Applied Physics.

[37]  Yan Gong,et al.  Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light , 2019, Energy & Environmental Science.

[38]  Chaohui He,et al.  Type-II InSe/ g-C3N4 Heterostructure as a High-Efficiency Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting. , 2019, The journal of physical chemistry letters.

[39]  Jian Lv,et al.  Two-dimensional Blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility show promising high-performance photovoltaic properties. , 2019, Nanoscale.

[40]  Zhongxiang Zhou,et al.  A water splitting photocatalysis: Blue phosphorus/g-GeC van der Waals heterostructure , 2019, Applied Physics Letters.

[41]  C. He,et al.  GeSe/BP van der Waals Heterostructures as Promising Anode Materials for Potassium-Ion Batteries , 2019, The Journal of Physical Chemistry C.

[42]  N. G. Deshpande,et al.  Visible-light assisted CdO nanowires photocatalyst for toxic dye degradation studies , 2019, Optik.

[43]  Y. Sasson,et al.  Sustainable visible light assisted in situ hydrogenation via a magnesium–water system catalyzed by a Pd-g-C3N4 photocatalyst , 2019, Green Chemistry.

[44]  N. Sidik,et al.  Recent progress on concentrating direct absorption solar collector using nanofluids , 2019, Journal of Thermal Analysis and Calorimetry.

[45]  G. Zeng,et al.  Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: Kinetics, intermediates, and mechanism insight , 2019, Journal of Catalysis.

[46]  Guofu Zhou,et al.  Insights into the mechanism of the enhanced visible-light photocatalytic activity of black phosphorus/BiVO4 heterostructure: a first-principles study , 2018 .

[47]  Yan-sui Liu,et al.  Solar power brings money to rural areas , 2018, Nature.

[48]  Huibo Wang,et al.  High-performance NiO/g-C3N4 composites for visible-light-driven photocatalytic overall water splitting , 2018 .

[49]  Ying Dai,et al.  Photoexcitation Dynamics in Janus-MoSSe/WSe2 Heterobilayers: Ab Initio Time-Domain Study. , 2018, The journal of physical chemistry letters.

[50]  Ruiqi Zhao,et al.  Blue Phosphorus/Mg(OH)2 van der Waals Heterostructures as Promising Visible-Light Photocatalysts for Water Splitting , 2018 .

[51]  Hongzhi Wang,et al.  WO3/g-C3N4 two-dimensional composites for visible-light driven photocatalytic hydrogen production , 2018 .

[52]  D. Das,et al.  C2N/WS2 van der Waals type-II heterostructure as a promising water splitting photocatalyst , 2018 .

[53]  Jiaguo Yu,et al.  g‐C3N4‐Based Heterostructured Photocatalysts , 2018 .

[54]  K. Takanabe Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design , 2017 .

[55]  A. Reshak Photophysical, transport and structure properties of Tl 10 Hg 3 Cl 16 single crystals: Novel photocatalytic water-splitting solar-to-hydrogen energy conversion , 2017 .

[56]  L. Dai,et al.  Multifunctional Carbon‐Based Metal‐Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution , 2017, Advanced materials.

[57]  Y. Lei Functional Nanostructuring for Efficient Energy Conversion and Storage , 2016 .

[58]  Jiaguo Yu,et al.  A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure. , 2016, Physical chemistry chemical physics : PCCP.

[59]  Siang-Piao Chai,et al.  Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? , 2016, Chemical reviews.

[60]  Yueping Fang,et al.  A facile fabrication of hierarchical Ag nanoparticles-decorated N-TiO2 with enhanced photocatalytic hydrogen production under solar light , 2016 .

[61]  Mingsen Deng,et al.  Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first-principles study. , 2015, Physical chemistry chemical physics : PCCP.

[62]  Zhong Lin Wang,et al.  Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. , 2015, Nano letters.

[63]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[64]  Xiao Feng,et al.  Industrial emergy evaluation for hydrogen production systems from biomass and natural gas , 2009 .

[65]  Juanita Mathews,et al.  Metabolic pathway engineering for enhanced biohydrogen production , 2009 .

[66]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[67]  Yong Xu,et al.  The absolute energy positions of conduction and valence bands of selected semiconducting minerals , 2000 .

[68]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[69]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[70]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[71]  H. Monkhorst,et al.  "Special points for Brillouin-zone integrations"—a reply , 1977 .

[72]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .