Overview of the ImageCLEF 2007 Object Retrieval Task

We describe the object retrieval task of ImageCLEF 2007, give an overview of the methods of the participating groups, and present and discuss the results. The task was based on the widely used PASCAL object recognition data to train object recognition methods and on the IAPR TC-12 benchmark dataset from which images of objects of the ten different classes bicycles, buses, cars, motorbikes, cats, cows, dogs, horses, sheep, and persons had to be retrieved. Seven international groups participated using a wide variety of methods. The results of the evaluation show that the task was very challenging and that different methods for relevance assessment can have a strong influence on the results of an evaluation.

[1]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[2]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[3]  Paul Clough,et al.  Overview of the 2005 cross-language image retrieval track (ImageCLEF) , 2005 .

[4]  Hermann Ney,et al.  Improving a Discriminative Approach to Object Recognition Using Image Patches , 2005, DAGM-Symposium.

[5]  Heidy Marisol Marín Castro,et al.  Automatic Image Annotation Using a Semi-supervised Ensemble of Classifiers , 2007, CIARP.

[6]  Paul Clough,et al.  The IAPR TC-12 Benchmark: A New Evaluation Resource for Visual Information Systems , 2006 .

[7]  Allan Hanbury,et al.  Overview of the ImageCLEFphoto 2007 Photographic Retrieval Task , 2008, CLEF.

[8]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[9]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[10]  Steffen Staab,et al.  Semantic Multimedia , 2008, Reasoning Web.

[11]  Jorma Laaksonen,et al.  Improving the Accuracy of Global Feature Fusion Based Image Categorisation , 2007, SAMT.

[12]  Carol Peters,et al.  Evaluation of Cross-Language Information Retrieval Systems , 2002, Lecture Notes in Computer Science.

[13]  Joost van de Weijer,et al.  Boosting color saliency in image feature detection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Yixin Chen,et al.  Image Categorization by Learning and Reasoning with Regions , 2004, J. Mach. Learn. Res..

[15]  Cordelia Schmid,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[16]  Mark Sanderson,et al.  The CLEF Cross Language Image Retrieval Track (ImageCLEF) 2004 , 2004, CLEF.

[17]  Erkki Oja,et al.  PicSOM-self-organizing image retrieval with MPEG-7 content descriptors , 2002, IEEE Trans. Neural Networks.

[18]  Michael R. Lyu,et al.  A novel log-based relevance feedback technique in content-based image retrieval , 2004, MULTIMEDIA '04.

[19]  Kanad K. Biswas,et al.  Region-based image retrieval using integrated color, shape, and location index , 2004, Comput. Vis. Image Underst..

[20]  Carol Peters,et al.  CLEF Methodology and Metrics , 2001, CLEF.

[21]  Nicu Sebe,et al.  Do Colour Interest Points Improve Image Retrieval? , 2007, 2007 IEEE International Conference on Image Processing.

[22]  Nenghai Yu,et al.  Visual language modeling for image classification , 2007, MIR '07.

[23]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Eugene Kim,et al.  Overview of the ImageCLEFmed 2006 Medical Retrieval and Medical Annotation Tasks , 2006, CLEF.

[26]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Keith Baker,et al.  5th Alvey vision Conference , 1990, Image Vis. Comput..

[28]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[29]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[30]  Hugo Jair Escalante,et al.  Word Co-occurrence and Markov Random Fields for Improving Automatic Image Annotation , 2007, BMVC.

[31]  Rong Jin,et al.  A unified log-based relevance feedback scheme for image retrieval , 2006, IEEE Transactions on Knowledge and Data Engineering.

[32]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Kai Li,et al.  Image similarity search with compact data structures , 2004, CIKM '04.

[34]  Rachid Deriche,et al.  Differential invariants for color images , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[35]  Jorma Laaksonen,et al.  Thoughts on evaluation of image retrieval inspired by ImageCLEF 2007 object retrieval task , 2007 .

[36]  Eugene Kim,et al.  Overview of the ImageCLEFmed 2006 Medical Retrieval and Annotation Tasks , 2006, CLEF.

[37]  Hermann Ney,et al.  Discriminative training for object recognition using image patches , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[38]  Joost van de Weijer,et al.  Edge and corner detection by photometric quasi-invariants , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Pietro Perona,et al.  Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[40]  Carol Peters,et al.  Cross-Language Information Retrieval and Evaluation , 2001, Lecture Notes in Computer Science.