An algorithm for the complete solution of quadratic eigenvalue problems

We develop a new algorithm for the computation of all the eigenvalues and optionally the right and left eigenvectors of dense quadratic matrix polynomials. It incorporates scaling of the problem parameters prior to the computation of eigenvalues, a choice of linearization with favorable conditioning and backward stability properties, and a preprocessing step that reveals and deflates the zero and infinite eigenvalues contributed by singular leading and trailing matrix coefficients. The algorithm is backward-stable for quadratics that are not too heavily damped. Numerical experiments show that our MATLAB implementation of the algorithm, quadeig, outperforms the MATLAB function polyeig in terms of both stability and efficiency.

[1]  Nicholas J. Higham,et al.  A framework for analyzing nonlinear eigenproblems and parametrized linear systems , 2011 .

[2]  Timo Betcke,et al.  Optimal Scaling of Generalized and Polynomial Eigenvalue Problems , 2008, SIAM J. Matrix Anal. Appl..

[3]  Françoise Tisseur,et al.  Perturbation theory for homogeneous polynomial eigenvalue problems , 2003 .

[4]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[5]  S. Gaubert,et al.  Tropical Scaling of Polynomial Matrices , 2009, 0905.0121.

[6]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[7]  Ilse C. F. Ipsen,et al.  On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..

[8]  Paul Van Dooren,et al.  Balancing Regular Matrix Pencils , 2006, SIAM J. Matrix Anal. Appl..

[9]  N. Higham Analysis of the Cholesky Decomposition of a Semi-definite Matrix , 1990 .

[10]  N. Higham,et al.  Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems , 2008 .

[11]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[12]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[13]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[14]  Volker Mehrmann,et al.  ON THE SOLUTION OF PALINDROMIC EIGENVALUE PROBLEMS , 2004 .

[15]  Nicholas J. Higham,et al.  The Conditioning of Linearizations of Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[16]  P. Lancaster,et al.  Linearization of matrix polynomials expressed in polynomial bases , 2008 .

[17]  S. Vologiannidis,et al.  Linearizations of Polynomial Matrices with Symmetries and Their Applications. , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[18]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[19]  P. Lancaster Linearization of regular matrix polynomials , 2008 .

[20]  Peter Lancaster,et al.  A Note on Weak and Strong Linearizations of Regular Matrix Polynomials , 2005 .

[21]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[22]  Paul Van Dooren,et al.  Normwise Scaling of Second Order Polynomial Matrices , 2004, SIAM J. Matrix Anal. Appl..

[23]  E. Antoniou,et al.  A new family of companion forms of polynomial matrices , 2004 .

[24]  HammarlingSven,et al.  An algorithm for the complete solution of quadratic eigenvalue problems , 2013 .

[25]  Daniel Kressner,et al.  Multishift Variants of the QZ Algorithm with Aggressive Early Deflation , 2006, SIAM J. Matrix Anal. Appl..

[26]  Frann Coise Tisseur Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .

[27]  Nicholas J. Higham,et al.  Backward Error of Polynomial Eigenproblems Solved by Linearization , 2007, SIAM J. Matrix Anal. Appl..

[28]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[29]  David S. Watkins Performance of the QZ Algorithm in the Presence of Infinite Eigenvalues , 2000, SIAM J. Matrix Anal. Appl..