Interpretation of multiple solutions and selection of the final crystal field parameter sets for orthorhombic and lower symmetry--case study: Er3+ ions at orthorhombic sites in ErNiAl4.
暂无分享,去创建一个
[1] C. Rudowicz,et al. Reanalysis of energy levels and crystal field parameters for Er3+ and Tm3+ ions at C2 symmetry sites in hexahydrated trichloride crystals—Intricate aspects of multiple solutions for monoclinic symmetry , 2010 .
[2] C. Rudowicz,et al. Comparative analysis of crystal-field parameters for rare-earth ions at monoclinic sites in AB(WO4)2 crystals: I. Tm3+ in KGd(WO4)2 and KLu(WO4)2, and Ho3+ and Er3+ ions in KGd(WO4)2 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[3] C. Rudowicz,et al. Intrinsically incompatible crystal (ligand) field parameter sets for transition ions at orthorhombic and lower symmetry sites in crystals and their implications , 2010 .
[4] A. Szytuła,et al. Crystal field in RPdIn (R=Ce, Pr, Nd) compounds , 2009 .
[5] R. Kripal,et al. Alternative zero-field splitting (ZFS) parameter sets and standardization for Mn2+ ions in various hosts exhibiting orthorhombic site symmetry , 2009 .
[6] W. Hutchison,et al. The crystal field interaction at the rare earth site in ErNiAl4 , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[7] M. Lewandowska,et al. Alternative crystal-field parameters for rare-earth ions obtained from various techniques: II. Reanalysis of spectroscopic data for Eu3+ and Er3+ ions in RE2BaXO5 (X = Co, Cu, Ni, Zn) high temperature superconductors and related systems , 2009 .
[8] M. Orlowski,et al. Alternative crystal field parameters for rare-earth ions obtained from various techniques I. Reanalysis of Mössbauer spectroscopy studies of Tm3+ ions in TmBa2Cu4O8 and TmBa2Cu3O7-δ high Tc superconductors , 2009 .
[9] A. Mech,et al. Crystal-field energy level analysis for Nd3+ ions at the low symmetry C1 site in [Nd(hfa)4(H2O)](N(C2H5)4) single crystals , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.
[10] M. Aguiló,et al. Crystal growth, crystal field evaluation and spectroscopy for thulium in monoclinic KGd(WO4)2 and KLu(WO4)2 laser crystals , 2008 .
[11] C. Rudowicz,et al. Reanalysis of crystal-field parameters for Nd 3 + ions in Nd 2 Ba Cu O 5 and Nd 2 Ba Zn O 5 based on standardization, multiple correlated fitting technique, and dataset closeness , 2007 .
[12] D. Newman,et al. Crystal Field Handbook , 2007 .
[13] D. Vij. Handbook of Applied Solid State Spectroscopy , 2006 .
[14] Y. Isikawa,et al. The magnetic properties of GdNiAl4 , 2005 .
[15] C. Rudowicz,et al. Trends in the crystal (ligand) field parameters and the associated conserved quantities for trivalent rare-earth ions at S4 symmetry sites in LiYF4 , 2004 .
[16] C. Rudowicz,et al. Can the low symmetry crystal (ligand) field parameters be considered compatible and reliable , 2004 .
[17] J. Cadogan,et al. An Overview of 166Er, 169Tm and 170Yb Mössbauer Spectroscopy , 2004 .
[18] G. Burdick,et al. Electric-dipole 4fn–4fn transition intensity parametrizations for lanthanides: sensitivity analysis of multiple local minima , 2002 .
[19] Qin Jian,et al. The Extended Version of the Computer Package CST for Conversions, Standardization and Transformations of the Spin Hamiltonian and the Crystal-field Hamiltonian , 2002, Comput. Chem..
[20] H. Sato,et al. Crystal field and magnetocrystalline anisotropy in ErNiAl , 2001 .
[21] C. Zaldo,et al. Measurement and crystal field analysis of energy levels of Ho3+ and Er3+ in KGd(WO4)2 single crystal , 2001 .
[22] M. F. Reid,et al. On the standardization of crystal-field parameters and the multiple correlated fitting technique: Applications to rare-earth compounds , 2000 .
[23] R. Bartram,et al. Crystal-Field Engineering of Solid-State Laser Materials , 2000 .
[24] J. Mulak,et al. The Effective Crystal Field Potential , 2000 .
[25] B. Figgis,et al. Ligand Field Theory and Its Applications , 1999 .
[26] M. F. Reid,et al. Ambiguities in the parametrization of 4fN-4fN electric-dipole transition intensities , 1999 .
[27] O. Malta,et al. Relationship between phenomenological crystal field parameters and the crystal structure: The simple overlap model , 1999 .
[28] Edward I. Solomon,et al. Inorganic electronic structure and spectroscopy , 1999 .
[29] R. Powell. Physics of Solid-State Laser Materials , 1998 .
[30] Christiane Görller-Walrand,et al. Chapter 155 Rationalization of crystal-field parametrization , 1996 .
[31] B. Malkin,et al. Chapter 150 Magnetic properties of nonmetallic lanthanide compounds , 1996 .
[32] C. Morrison. Crystal fields for transition-metal ions in laser host materials , 1992 .
[33] D. Newman,et al. The superposition model of crystal fields , 1989 .
[34] Clyde A. Morrison,et al. Angular momentum theory applied to interactions in solids , 1988 .
[35] C. Rudowicz. On standardization and algebraic symmetry of the ligand field Hamiltonian for rare earth ions at monoclinic symmetry sites , 1986 .
[36] C. Rudowicz,et al. On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry , 1985 .
[37] S. P. Sinha. Systematics and the Properties of the Lanthanides , 1982 .
[38] R. Leavitt,et al. Chapter 46 Spectroscopic properties of triply ionized , 1982 .
[39] B. Judd,et al. Optical Spectra of Transparent Rare Earth Compounds , 1978 .
[40] D. Newman. Theory of lanthanide crystal fields , 1971 .
[41] S. Sugano,et al. Multiplets of transition-metal ions in crystals , 1970 .
[42] Roger G. Burns,et al. Mineralogical applications of crystal field theory , 1970 .
[43] B. N. Figgis,et al. Introduction to Ligand Fields , 1966 .
[44] William F. Meggers,et al. Spectroscopic properties of rare earths , 1965 .