Interpretation of multiple solutions and selection of the final crystal field parameter sets for orthorhombic and lower symmetry--case study: Er3+ ions at orthorhombic sites in ErNiAl4.

[1]  C. Rudowicz,et al.  Reanalysis of energy levels and crystal field parameters for Er3+ and Tm3+ ions at C2 symmetry sites in hexahydrated trichloride crystals—Intricate aspects of multiple solutions for monoclinic symmetry , 2010 .

[2]  C. Rudowicz,et al.  Comparative analysis of crystal-field parameters for rare-earth ions at monoclinic sites in AB(WO4)2 crystals: I. Tm3+ in KGd(WO4)2 and KLu(WO4)2, and Ho3+ and Er3+ ions in KGd(WO4)2 , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  C. Rudowicz,et al.  Intrinsically incompatible crystal (ligand) field parameter sets for transition ions at orthorhombic and lower symmetry sites in crystals and their implications , 2010 .

[4]  A. Szytuła,et al.  Crystal field in RPdIn (R=Ce, Pr, Nd) compounds , 2009 .

[5]  R. Kripal,et al.  Alternative zero-field splitting (ZFS) parameter sets and standardization for Mn2+ ions in various hosts exhibiting orthorhombic site symmetry , 2009 .

[6]  W. Hutchison,et al.  The crystal field interaction at the rare earth site in ErNiAl4 , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  M. Lewandowska,et al.  Alternative crystal-field parameters for rare-earth ions obtained from various techniques: II. Reanalysis of spectroscopic data for Eu3+ and Er3+ ions in RE2BaXO5 (X = Co, Cu, Ni, Zn) high temperature superconductors and related systems , 2009 .

[8]  M. Orlowski,et al.  Alternative crystal field parameters for rare-earth ions obtained from various techniques I. Reanalysis of Mössbauer spectroscopy studies of Tm3+ ions in TmBa2Cu4O8 and TmBa2Cu3O7-δ high Tc superconductors , 2009 .

[9]  A. Mech,et al.  Crystal-field energy level analysis for Nd3+ ions at the low symmetry C1 site in [Nd(hfa)4(H2O)](N(C2H5)4) single crystals , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  M. Aguiló,et al.  Crystal growth, crystal field evaluation and spectroscopy for thulium in monoclinic KGd(WO4)2 and KLu(WO4)2 laser crystals , 2008 .

[11]  C. Rudowicz,et al.  Reanalysis of crystal-field parameters for Nd 3 + ions in Nd 2 Ba Cu O 5 and Nd 2 Ba Zn O 5 based on standardization, multiple correlated fitting technique, and dataset closeness , 2007 .

[12]  D. Newman,et al.  Crystal Field Handbook , 2007 .

[13]  D. Vij Handbook of Applied Solid State Spectroscopy , 2006 .

[14]  Y. Isikawa,et al.  The magnetic properties of GdNiAl4 , 2005 .

[15]  C. Rudowicz,et al.  Trends in the crystal (ligand) field parameters and the associated conserved quantities for trivalent rare-earth ions at S4 symmetry sites in LiYF4 , 2004 .

[16]  C. Rudowicz,et al.  Can the low symmetry crystal (ligand) field parameters be considered compatible and reliable , 2004 .

[17]  J. Cadogan,et al.  An Overview of 166Er, 169Tm and 170Yb Mössbauer Spectroscopy , 2004 .

[18]  G. Burdick,et al.  Electric-dipole 4fn–4fn transition intensity parametrizations for lanthanides: sensitivity analysis of multiple local minima , 2002 .

[19]  Qin Jian,et al.  The Extended Version of the Computer Package CST for Conversions, Standardization and Transformations of the Spin Hamiltonian and the Crystal-field Hamiltonian , 2002, Comput. Chem..

[20]  H. Sato,et al.  Crystal field and magnetocrystalline anisotropy in ErNiAl , 2001 .

[21]  C. Zaldo,et al.  Measurement and crystal field analysis of energy levels of Ho3+ and Er3+ in KGd(WO4)2 single crystal , 2001 .

[22]  M. F. Reid,et al.  On the standardization of crystal-field parameters and the multiple correlated fitting technique: Applications to rare-earth compounds , 2000 .

[23]  R. Bartram,et al.  Crystal-Field Engineering of Solid-State Laser Materials , 2000 .

[24]  J. Mulak,et al.  The Effective Crystal Field Potential , 2000 .

[25]  B. Figgis,et al.  Ligand Field Theory and Its Applications , 1999 .

[26]  M. F. Reid,et al.  Ambiguities in the parametrization of 4fN-4fN electric-dipole transition intensities , 1999 .

[27]  O. Malta,et al.  Relationship between phenomenological crystal field parameters and the crystal structure: The simple overlap model , 1999 .

[28]  Edward I. Solomon,et al.  Inorganic electronic structure and spectroscopy , 1999 .

[29]  R. Powell Physics of Solid-State Laser Materials , 1998 .

[30]  Christiane Görller-Walrand,et al.  Chapter 155 Rationalization of crystal-field parametrization , 1996 .

[31]  B. Malkin,et al.  Chapter 150 Magnetic properties of nonmetallic lanthanide compounds , 1996 .

[32]  C. Morrison Crystal fields for transition-metal ions in laser host materials , 1992 .

[33]  D. Newman,et al.  The superposition model of crystal fields , 1989 .

[34]  Clyde A. Morrison,et al.  Angular momentum theory applied to interactions in solids , 1988 .

[35]  C. Rudowicz On standardization and algebraic symmetry of the ligand field Hamiltonian for rare earth ions at monoclinic symmetry sites , 1986 .

[36]  C. Rudowicz,et al.  On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry , 1985 .

[37]  S. P. Sinha Systematics and the Properties of the Lanthanides , 1982 .

[38]  R. Leavitt,et al.  Chapter 46 Spectroscopic properties of triply ionized , 1982 .

[39]  B. Judd,et al.  Optical Spectra of Transparent Rare Earth Compounds , 1978 .

[40]  D. Newman Theory of lanthanide crystal fields , 1971 .

[41]  S. Sugano,et al.  Multiplets of transition-metal ions in crystals , 1970 .

[42]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[43]  B. N. Figgis,et al.  Introduction to Ligand Fields , 1966 .

[44]  William F. Meggers,et al.  Spectroscopic properties of rare earths , 1965 .